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Abstract

We present a system for rapid reconstruction of accurate 3D models
of architectural sites from freehand perspective sketches and geo-
metric constraints that describe their spatial structure. This system
is based on new approach to resolution of such constraints: they are
separated from preferences — that are provided by sketches — and
resolved formally in serialized manner. The reconstruction process
is separated into two independent phases: first a sketch is corrected
to ensure that affine and certain metric constraints would be satis-
fied in space and next a 3D model is elevated by resolution of only
projective constraints. Usage of a geometric algebra allows to rep-
resent solutions in a simple coordinate-free form and to perform
computations with any precision. The obtained formal solutions
may be reused to accelerate succeeding reconstructions when the
user incrementally modifies the scenes.

Input of geometric constraints is simplified greatly by their auto-
matic inference, user-validate suggestive analysis of sketch, usage
of extensible set of primitives and interaction with a knowledge
base. Furthermore, the system examines automatically structural
and numerical consistency of imposed constraints to avoid contra-
dictions.

Keywords:  Modeling, resolution of constraints, perspective
sketches, interactive reconstruction, projective geometric algebra

1. INTRODUCTION

Use of new computer-aided instruments in architecture still causes
certain problems. Namely, because most of CAD systems are not
suitable for conceptual design of architectural sites, this stage is
mainly done on the paper. Thus, once spatial structure of a building
is conceived, the designer should again model it with a CAD system
and hence loses his time. Moreover, architects often need to put
already existing or even destroyed buildings in new virtual contexts;
hence they need to reconstruct 3D models from photographs or even
engravings, where it is not possible to make direct measurements of
features of a scene. Therefore, the problem of reconstruction of 3D
shapes from freehand imprecise drawings or uncalibrated views is
receiving increased attention.

However, reconstructing 3D models of architectural sites from im-
precise conceptual drawings still remains a challenge. Indeed, free-
form 3D sketching systems [6] are not suitable because they are
not able to deal with well-constrained polyhedral forms widely oc-
curring in architecture and do not provide accurate solutions. The
common way to increase accuracy is to introduce spatial structure
of a depicted scene that is described usually by 3D geometric con-
straints. One can infer such constraints by analyzing a sketch [4, 8]
automatically. However, completely automated analysis causes

misinterpretations. Furthermore, most of such approaches involve
only axonometric projections, while perspective ones are rarely
used [13] despite of the fact that they provide more information.
On the other hand, spatial constraints can be explicitly declared by
the user, who recognizes 3D elements and their relations. However,
most of user-centered model-based systems [3, 7] are not flexible to
describe complex scenes, sensitive to input errors and cannot be ap-
plied to imprecise drawings. All the above methods involve heavy
numerical computations that are time consuming and subject to in-
stabilities.

In this paper, we present a new system that allows to reconstruct
rapidly accurate 3D models from single perspective views, which
may be either imprecise freehand conceptual sketches or pho-
tographs, and geometric constraints that describe spatial structure
of depicted scenes. We do not try to infer such a structure by analyz-
ing a view, that is, constraints are imposed explicitly. Thus, the real
value and convenience of such an interactive reconstruction system
depend heavily on the following properties. First, it should allow to
flexibly describe complex scenes without overloading the user with
a lot of complicated work. Second, the system should allow to re-
peat reconstruction rapidly when the user incrementally enriches a
scene with new details. Furthermore, such incremental reconstruc-
tions should provide predictable results, whereas it is often not a
case if numerical optimization methods [3, 8] are used. Third, fast
response time should be ensured, while the obtained model should
be accurate, that is, all the imposed geometric constraints should
be satisfied with high precision. Finally, inconsistent constraints
should be detected to alert the user. All these goals are achieved by
uniform representation of constraints, their serialized formal reso-
lution and usage of a geometric algebra and projective geometry.

The paper is organized as follows. In section 2 we start with a brief
description of our base principles of serialization of constraints and
their formal resolution. Section 3 presents the Grassmann-Cayley
algebra that is our main reasoning tool. In section 4 we describe
how geometric constraints are represented uniformly using this al-
gebra and projective geometry and how their structural consistency
is ensured. Section 5 presents how input of such constraints is
simplified and how they are inferred to reduce user work. In sec-
tions 6, 8 we discuss a rapid 3D geometric constraints solver that
first constructs a general formal solution of an imposed reconstruc-
tion problem and next evaluate a concrete numerical solution as
well as ensures numerical consistency of constraints. Such a res-
olution is possible only if a sketch is a true perspective projection
of a scene described by these constraints. Methods that allow to
transform any imprecise freehand sketch so that it would be such
projection are described in section 7. Sections 9, 10 present our
approach to repeated and incremental reconstruction. Finally, we
discuss implementation and present several examples.



2. THE APPROACH

To allow the formal resolution of constraints that describe spatial
structure of a 3D scene, they are separated from preferences that
are provided by the scene projection — that is, by the correspond-
ing perspective sketch. All the 3D constraints are strictly satisfied,
whereas preferences are treated in relaxed manner. Namely, we
first find the correct sketch that is merely close to original one while
strictly satisfies all the projective consequences of the imposed con-
straints. Certainly, such consequences may not hold due to user er-
rors and imprecisions. Next, we elevate formally a 3D model from
the obtained true perspective projection by using the Grassmann-
Cayley geometric algebra.

The key principle is the serialization of constraints. Each of them
represents a projective (collinearity or coplanarity), affine (paral-
lelism) or metric (orthogonality) relation. The idea is to elevate a
3D model from a true perspective projection by resolving only pro-
jective constraints that are easy to satisfy formally. On the other
hand, if we consider a sketch only as a source of preferences and
correct it to satisfy one by another projective consequences of affine
and metric relations, constraints of the corresponding types would
be satisfied in space without changing the formal solution. It al-
lows to reduce 3D nonlinear problems to simple 2D linear or 2D
minimization problems, which converge in few steps, and to repre-
sent a solution of reconstruction problem in the simple form of a set
of coordinate-free constructive operations of the geometric algebra,
and hence to provide numerical solutions of any desired accuracy.

We do not solve arising system of constraints globally. Instead, con-
straints are resolved formally by local methods. On the other hand,
some global information is used to control resolution processes and
hence to avoid well-known problems of local methods. Namely, we
establish operation priorities to choose the most stable and com-
putationally effective solution. Degenerate solutions are rejected
formally by search for linear-dependent constraint configurations.

3. THE GRASSMANN-CAYLEY ALGEBRA

The Grassmann-Cayley algebra allows to express geometric con-
structions in space by projectively invariant coordinate-free alge-
braic statements [9]. Therefore, we choose it as the main reasoning
tool for elevation of 3D models from their perspective projections.
Furthermore, this algebra involves usage of projective geometry.
Thus, we do not need to treat many special cases of parallelism and
orthogonality of geometric objects; it simplifies our 3D geometric
constraint solver and improves significantly its efficiency.

The Grassmann-Cayley algebra is a double algebra defined in pro-
jective space P(R*). It provides two operators on projective sub-
spaces of P(R*) — that is, on points, lines and planes. The join
operator V generates a union of disjoint subspaces, the meet op-
erator A generates intersection of subspaces®. Any k-dimensional
subspace is represented by an extensor of step & — that is, an exte-
rior product a; V ...V ay of vectors a1,...,axr of P. For instance,

point P, vV point P, = line P, P,
plane w AlineL = point7N L.

The algebras implied by the join and the meet are related by the
duality operator * as (z V y)* = ™ A y*, where z, y are extensors

"However, for lines it generates a scalar, whereas its generalized version M solves
this problem [9].

Figure 1: A scene that is hard to describe without low-level objects

of any step. The duality allows to express joins as matrix products

)*T

(zVy)" =z .

For any projective subspace, the duality operator generates a
pseudo-orthogonal dual subspace and hence allows to match any
given line with an orthogonal line and any given point with a plane.

Once any plane =« is chose to represent the plane at infinity 7o,
it is possible to represent constructions that imply parallelism and
orthogonality constraints [9]. For instance, a line L that is parallel
to a given line L, and incident to a given point P can be constructed
asL =PV (Li A Teo).

To perform computations from formal expressions of the
Grassmann-Cayley algebra, 3D points are represented by 4D vec-
tors of homogeneous coordinates, 3D lines are represented by ma-
trices of their Pliicker coordinates, and planes are represented by
duals of points. All the computations are reduced to evaluations of
exterior products for joins and matrix products for meets.

4. REPRESENTATION OF CONSTRAINTS

We represent any 3D scene with only elementary 3D objects
(points, lines and planes) and constraints (collinearity and copla-
narity of points and lines, parallelism and orthogonality of lines
and planes) [12]. The ability to manipulate such low-level objects
straightforwardly allows the user to create easily models that other-
wise would be hard or tedious to describe (Figure 1). On the other
hand, the user is not burdened with a lot of complicated work due
to automatic inference of many constraints (Section 4.1), suggestive
analysis of a sketch, usage of extensible set of high-level primitives
and possible application of the knowledge base (Section 5).

Using projective geometry and the Grassmann-Cayley algebra, we
introduce very simple homogeneous representation of spatial struc-
ture of scenes. Indeed, any projective 3D constraint (e.g., collinear-
ity or coplanarity) can be decomposed into a set of incidences. In-
cidence ¢ is a projectively invariant relation of containment of sub-
spaces. For instance,

points A, B, C are collinear iff 3line L{Ae L,Be L,C e L}.
It is also holds for affine constraints:
lines Ly || Lo iff Apoint I {L1eIl,Loel,lem},

where 7o, is the plane at infinity — that is, the projective comple-
tion of the 3D affine space. Finally, it also holds for metric orthog-
onality constraints. Indeed, let we call orthinf(A) the set of all the
infinity points in directions orthogonal to A. For instance, for any
line L orthinf(L) is a line at infinity, for any plane 7 orthinf ()
is a point at infinity. Then

line L L plane 7 iff orthinf(w) ¢ L or orthinf(L) e .



Therefore, we can represent an arbitrary complex scene in the form
of the constraint graph, which vertices represent elementary 3D
objects, points at infinity and orthinfs while edges represent estab-
lished and inferred incidence constraints.

4.1 Structural Consistency of Constraints

Uniformness of the above representation allows to define easily the
notion of structural consistency of 3D geometric constraints [11].
Indeed, for geometry of incidences there are only five basic con-
tradictory configurations, such as a pair of distinct lines that are
incident to the same pair of points. A constraint graph is contradic-
tory if it involves any of these configurations. The idea is to prevent
creation of contradictory configurations during input of constraints.
Itis achieved by usage of geometry lawsand graph update proce-
dures[11, 12]. Such procedures are called automatically once new
incidence constraints are established and infer new constraints ac-
cording to the corresponding geometry laws. Thus, substantial part
of geometric constraints is created by the system. If such a proce-
dure infers a contradictory configuration, the created constraint is
not consistent with already established ones. In this case, the user
is alerted to correct the problem, while the system suggests possi-
ble solutions. Therefore, it is possible to create only structurally
consistent constraint graphs that are not contradictory and contain
all the geometric consequences of all the imposed constraints.

4.2 Projection of Constraints

Once we have a perspective sketch of a scene, projections of all the
visible scene points and of all the points at infinity involved by par-
allelism and orthogonality constraints are known (the last ones are
computed during the sketch correction as described in section 7).
We add new constraints that relate these projections with their orig-
inals in 3D space and the center of projection (eye). Then, once
positions of certain 3D objects of the scene are known, one can de-
termine the eye position and “elevate” the scene from its projection
as described in section 6.

5. INPUT OF CONSTRAINTS
5.1 Analysis of a Sketch

Whereas we use only elementary 3D geometric objects and con-
straints, our goal is to allow to describe spatial structure of com-
plex 3D scenes in a simple, natural and intuitive manner. Thus,
we need well-designed computer human interaction tools. As we
have already mentioned, to reconstruct a 3D model the user should
sketch its shape and specify constraints on its elements. It is a typi-
cal Post-WIMP interaction paradigm [14]. Thus, efficiency of such
a system interaction can be improved greatly by anticipating user
behavior and hence by analyzing his sketches in real-time to deter-
mine forms and constraints that the users means to do. The user
may then concern himself to design objects in a creative way. How-
ever, completely automated analysis of sketches often causes mis-
interpretations, especially for perspective views (Section 1). Thus,
we need user validations, whereas without disturbing the subject
and stopping his creativity. We hence plan to use sketching and
deduction tools in a gestural and suggestive interface [5].

According to imposed requirements, the first step of our approach
to system interaction was to conduct a study of architect sketches
— precisely, of strokes composing their.The conducted experiment
was aimed to understanding architect gestures and strokes. The hy-
pothesis is that studying those drawings and making statistics may

enable us to isolate invariants and typical tasks of the sketching
process. Our experiment consisted in several drawing tasks. Par-
ticipants were architect students and architects. Their tasks were
to draw buildings in single perspective views. The drawings were
captured with a digitizing tablet. To analyze these drawings, we in-
troduced a taxonomy of architectural strokes — that are, construc-
tion, primary, detail, and style ones. By analyzing on this corpus
with this taxonomy, we identified three drawing contexts — that
are, constructive, completion, and style. Actually, we work on au-
todetection of these contexts and their transitions; it allows to adapt
the system to users behavior and facilitate knowledge extraction
from sketches. For instance, we cannot ask the user to validate a
system suggestion during the constructive phase because it will dis-
tract him from a creative work.

The obtained results allow to simplify low-level sketch processing
and extraction of geometric properties. We implemented input fil-
ters to transform original digitized pen strokes to most structure
data. First, we use a segmentation filter that is based on advanced
vertices and corners detection [10]. This filter produces segments
that are then merged with the approximation filter. The latter uses
heuristics to combine certain close segments in one, because sev-
eral strokes may define one segment in freehand sketches. We use
results of the preceding study and user-dependant data to make
this filter more effective. The last low-level processing step is to
link segments at connection endpoints, because users tend to place
stroke endpoints innacurately. The problem of detection of geomet-
ric constraints can be divided in two tasks. First, we use basic object
recognition methods to extract simple 2D properties. Next, we have
to focus on advanced techniques of sketch recognition. Note that
extracted properties are only suggested to the user [5] and hence
problems of completely automated analysis are avoided.

5.2 High-Level Primitives

While the system infers automatically substantial part of con-
straints, either by ensuring structural consistency or by analyzing
sketches, describing complex scenes with only elementary 3D ob-
jects such as points and lines still may be a tedious task. Thus, it is
possible to group elementary 3D objects and constraints into high-
level primitives. For instance, the rectangle primitive represents
a 3D rectangle and contains four coplanar points, incident to four
lines that are pairwise orthogonal.

Unlike to traditional “black-box shapes that have fixed set of prop-
erties [3], our primitives are similar to macros. Namely, a primitive
is represented by a constraint graph (Section 4) that describe its
constituent geometric objects and constraints. Once the user in-
stantiates a primitive, the corresponding graph is simply added to a
scene constraint graph. Such a representation provides significant
advantages. First, a primitive may be an object of any degree of
complexity. Second, the user is able to create easily his own prim-
itives. Thus, it is possible to reuse scene elements that are tedious
to describe every time they are required. For instance, consider
the balcony primitive (Figure 2), which is a rectangular polyhedron
with two faces removed. Although such elements appear often in
architectural scenes, many modeling systems do not provide this
primitive. On the other hand, it is difficult to model it every time,
because creation of four rectangles and three constraints on their
sides is required. Contrariwise, because of our representation, the
user is able to describe this primitive only once and next simply
instantiate it. Finally, because primitives are just instances of con-
straint graphs, it is possible to establish additional constraints on
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Figure 2: Two instances of the balcony primitive. Constraints that
describe the primitive may be removed by the user (right)

their constituent elements or even remove them. For instance, the
user can remove the constraint that sets parallelism of two lateral
faces of an instance of the balcony (Figure 2, right).

5.3 Inference from a Knowledge Base

Because architectural sites are often designed following well-
defined rules, it is possible to use domain-specific knowledge to
simplify modeling of complex scenes. Namely, 3D geometric con-
straints can be inferred automatically from the knowledge base that
stores information about spatial structure of buildings and their el-
ements, their number and relations [1].

6. FORMAL RESOLUTION OF
CONSTRAINTS

To reconstruct a scene is to determine positions in space of all
its constituent elementary objects a scene so that imposed con-
straints would be satisfied. Unfortunately, most of geometric con-
straint solvers use expensive numerical optimization or symbolic
approaches. However, due to usage of the constructive geomet-
ric algebra and projective geometry it is possible to build a formal
solution of a given scene reconstruction problem by very efficient
propagation of known data and hence to ensure fast response time.
Furthermore, formal solutions are reused to accelerate significantly
succeeding repeated and incremental reconstructions.

A formal solution is a set of coordinate-free expressions of the
Grassmann-Cayley algebra that determine each of the elementary
3D objects composing a scene so that constraints imposed on it
would be formally satisfied. For instance, if a point P is constrained
as incident to a line L and a plane 7, the formal solution will con-
tain the expression P = L A =, because a meet of a line and a
plane determines their intersection. Using the Grassmann-Cayley
algebra, it is possible to determine — that is, to construct to satisfy
imposed constraints — any elementary 3D object once there is a
sufficient number of known 3D objects incident to it [12]. How-
ever, because our constraint graphs contain all the consequences of
all the constraints, an object can be determined often in different
ways. On the other hand, operations of the Grassmann-Cayley al-
gebra differ in accuracy and computation cost. Furthermore, due to
separation of constraints and preferences, any 3D point should be
determined via its projection only if it is impossible to construct it
from other incident 3D elements. Therefore, we establish the oper-
ation priorities [12]. Our choice of priorities ensures that a whole
formal solution does not depend on order of establishing constraints
that is not a case for many solvers. Once an object is determined
with the highest possible priority, the obtained solution is checked
to be non-degenerate. We can analytically reject degenerate solu-
tions. Indeed, degeneracy is caused by linear dependency of solu-
tion elements, whereas any structurally linear dependent configu-
ration can be found and hence rejected by rapid searching the con-

straint graph and hence without any computations [12]. Once the
best non-degenerate solution of the current local problem of con-
structing a 3D object via its known neighbors is found, it is added
to the formal solution. Elements of remaining solutions form a list
of object’s alternative evaluators, which are used to check numeri-
cal consistency.

To start the resolution of constraints, some elementary 3D objects
of a scene should be known. Once we have a perspective view of
a scene, projections of all visible scene points and points at infinity
are known (Sections 4.2, 7). Position of the center of projection
is known from orthogonality constraints (Section 7.3). Thus, our
algorithm is called as “elevation” from a view. Because a single
perspective view corresponds to an infinite set of 3D models, the
user should set additional constraints to choose the interesting one.
Namely, the user should set as known certain elementary 3D objects
by specifying, for instance, their depths. The number of parameters
that determine such objects required and sufficient to resolve unam-
biguously the system of constraints describing a scene is the num-
ber of degrees of freedom of this scene. This number is determined
automatically [12]. If the system is under-constrained, the user is
demanded either to add new constraints or set as known more ob-
jects. If the system is over-constrained, its consistency is checked
during numerical evaluation.

The described approach provides advantages that improve conve-
nience and efficiency of our interactive modeling system. First,
it is possible to reconstruct certain hidden parts of a scene. The
user should just describe their spatial structure as usual and declare
them as hidden. Projections of hidden 3D points and lines are not
created and hence not used. However, hidden points and lines are
constructed via its incident elements if there are enough constraints
on them. Second, for certain configurations a formal solution does
not depend neither on order of creating constraints nor on choice of
objects to constrain degrees of freedom or to be hidden. For exam-
ple, this is a case for instances of the box primitive. Thus, for such
primitives it is possible to have predefined solutions; it accelerates
the resolution of constraints for scenes containing their instances.

6.1 Example of elevation

Let we have a corrected perspective sketch abed of a 3D parallel-
ogram ABCD and geometric constraints that describe its struc-
ture: points A, B, C, D are coplanar (i.e., incident to a plane =),
lines AB || CD and AD || CB (Figure 3). Vanishing points i,
7 are computed during the sketch correction as well as the center
of projection O (Section 7). To elevate a 3D parallelogram from
the sketch, we have to know one of its points. Thus, the system
has one degree of freedom; it is determined automatically and the
user is demanded to set as known one of the points. Let he spec-
ifies a depth of the point A. Then, this point is determined as
A = (OVa) A rg, where 7y is a plane that sets its depth. Points at
infinity I, J of the pencils (AB, CD), (AD, BC) are determined
immediately as I = (OV i) Ao, J = (OV j) A oo, Where 7o iS
the plane at infinity, lines AV I, AV J are constructed and the plane
7 = AVIVJ isdetermined. Next, points B = (OVb)M(AVI)?,
D = (Ovd)n(AvV J) are constructed, because due to choice
of priorities we prefer to intersect lines of sight with lines. Finally,
whereas the point C can be constructed as C = (O V ¢) A «, our
choice of priorities implies usage of projections of 3D points only
if there is no other ways to construct them; thus, the point C' is
constructedas C = (BV I) (D V J).

2M isageneralized join operator that allows to construct intersections of lines[9].



Figure 3: An example of elevation of a 3D parallelogram

7. SERIALIZED SKETCH CORRECTION

Whereas the formal elevation described in the previous section uses
only projectively invariant operations of generation and intersection
of subspaces, it allows to satisfy affine and even certain metric (or-
thogonality) constraints in space without changing the formal solu-
tion. Indeed, such constraints imply projective consequences —
that is, constraints on elements of a sketch that should be respected
to ensure that the spatial ones hold. For instance, images of 3D par-
allel lines should intersect at the same vanishing point. However,
such consequences do not hold due to errors in freehand sketches
(Figure 4). Moreover, it is quite impossible to draw a perspective
sketch without such errors. Thus, the idea is to correct a sketch
to respect these consequences and to find a center of projection so
that all the affine and orthogonality constraints would be exactly
satisfied in space once we evaluate a formal solution (Section 6).

A sketch is corrected in the serialized manner. First, we construct
a formal correction plan that expresses all the sketch elements
(images of 3D points and lines) so that all their incidence relations,
which are projectively invariant, would be satisfied once the sketch
will be redrawn from vanishing points and certain free points. Then,
we compute vanishing points to satisfy projective consequences of
affine constraints. Next, vanishing points are corrected and a center
of projection is found so that 3D orthogonality constraints would
be satisfied. Finally, we redraw the sketch from these vanishing
points by using the formal correction plan. Thus, a true perspective
projection is obtained.

7.1 Formal Correction for Incidence
Constraints
The idea to satisfy incidence constraints between sketch points

and lines and construct a formal correction plan is to redraw the
sketch from the most constrained to less constrained points. The

Figure 4: An incorrect sketch: projective consequences of affine
constraints are not respected

required order can be obtained by propagation of degrees of free-
dom. Namely, we erase step by step sketch points and their incident
sketch lines according to degrees of freedom (DOF) of these points.
A number of DOFs of a sketch point is defined as the number of its
incident lines that are not erased yet. The point is constructed as
the intersection of these lines, while all the already erased incident
lines are constructed from the point. To express such constructions,
we use the 2D Grassmann-Cayley algebra. Because it is possi-
ble to compute exactly only intersections of pairs of lines, over-
constrained configurations are possible (imagine a corridor). How-
ever, we treat such configurations formally as described in [12]. At
each step, we erase a point with the minimal number of DOFs. The
reversed order of these operations is the required one.

7.2 Affine Constraints

To satisfy 3D affine constraints, images — that are, lines on a sketch
— of 3D parallel lines should intersect at the same points, while
vanishing points of images of 3D lines such that certain of are
coplanar should be aligned along vanishing lines. We compute van-
ishing points of images of 3D parallel lines so that it would be close
as possible to these images by using weighted linear least squares.
Next, vanishing lines are evaluated by linear regression on the com-
puted vanishing points. Finally, vanishing points are projected on
the computed horizon lines. Thus, once we redraw a sketch from
these points, it will be distorted minimally.

7.3 Orthogonality Constraints

3D orthogonality constraints determine a position of the center of
projection (eye) such that they would be satisfied in space after the
formal elevation from a sketch. Namely, if we have three pencils
of 3D parallel lines declared as pairwise orthogonal, their vanish-
ing points determine the principal point — that is, the intersection
of the optical axis with the sketch plane — as well as the focal
length [2]. For instance, the principal point is the orthocenter of a
triangle built on these vanishing points. Thus, is we have several
triples of such orthogonal pencils, we correct the corresponding
vanishing triangles so that their orthocenters would coincide and
they would define the same focus distance [12].

Once the eye position is computed, the image of the absolute conic
is known. Vanishing points of remaining pairs of orthogonal pen-
cils of 3D parallel lines should be conjugate with respect to this
image [7]. Thus, we correct them to satisfy this constraint by solv-
ing simple minimization problem, which converges in few steps.

Because a 3D line is orthogonal to plane iff it is incident to the
plane’s orthinf (Section 4), an image of the line on a sketch should
be incident to a projection of the orthinf of the plane. We can cor-
rect a sketch to satisfy this constraint if degrees of freedom of a
plane involve only translation, because in this case it is possible to
compute the projection of its orthinf without elevation of the plane.

8. NUMERICAL EVALUATION

Once we have constructed a formal solution of a scene reconstruc-
tion problem, computed position of the center of projection and
corrected all the sketch points, we compute a numerical solution:
we evaluate Pliicker coordinates of all the elementary 3D objects
composing the scene. First, the user is demanded to specify nu-
merical parameters of 3D objects that were required to be known
during the formal resolution of constraints (Section 6) — for in-
stance, their depths or distances from the eye. Then we put a sketch



and the computed center of projection into 3D projective space and
evaluate Pliicker coordinates of each of remaining scene objects by
computing a coordinate expression of its determining operation. To
compute reliably and efficiently, we use principles from floating
point filters: all the computations are performed in doubles, and
only if a problem occurs, exact arithmetics is used as backup. On
the other hand, we can achieve extremely high precision by using
real or rational arithmetics.

A numerical solution of a scene reconstruction problem is consis-
tent iff: (1) all the elementary 3D scene objects are not degenerate,
(2) all the points and lines that are not inferred by affine or orthog-
onality constraints are not incident to the plane at infinity, and (3)
all the incidence constraints presented in the constraint graph are
satisfied. Thus, the numerical consistency differs from structural
one (Section 4.1) because it depends on particular values of user
specified numerical parameters — for instance, consider a plane de-
termined by a join or three points that are not declared or inferred
as collinear. However, the user may specify coordinates (depths)
of these point so that they would be in fact collinear. We ensure
numerical consistency by using alternative evaluators (Section 6)
obtained during the formal resolution [11, 12]. If contradictions are
found, the user is alerted to change provided parameters.

9. REPEATED RECONSTRUCTION

Once a 3D model is reconstructed, it is possible to rapidly obtain the
new one when the user changes certain scene parameters. In fact,
the user may move certain points of a drawing, or change spatial
positions of certain elementary 3D objects that were required to be
known (Section 6). Such changes do not affect formal solutions
neither for scene reconstruction nor for sketch correction problems.

Thus, in the first case, vanishing points of parallel lines incident
to the moved points are affected by the these points and hence are
recalculated (Section 7.2). Because the center of projection is deter-
mined by vanishing points, the user is demanded to choose whether
its position has to be changed. In this case, the process of resolu-
tion of orthogonalities and eye calibration is repeated from scratch
(Section 7.3). Otherwise, affected vanishing points are corrected
so that it would determine the previous eye position. Finally, the
numerical evaluation is performed as usual, though the user is not
demanded to set known objects, since their positions are retained
from the previous reconstruction pass (Figure 5).

In the second case, positions of the view points and hence the van-
ishing points and the center of projection are not affected. There-
fore, we just repeat the numerical evaluation (Section 8) by using
changed spatial positions of known elementary 3D objects.

Because formal solutions are reused, our system allows to rapidly
repeat reconstructions and produce accurate and predictable results.

10. INCREMENTAL RECONSTRUCTION

Once a 3D model is reconstructed, it is possible to rapidly obtain
the new one when the user enriches a scene with new details. In
fact, new elements may have no any relations with the already re-
constructed ones, or may be linked with the old ones by constraints.

In the first case, the algorithm for formal constraint resolution (Sec-
tion 6) is applied only to the isolated subgraph of the scene con-
straint graph that corresponds to the new elements. Next, new part
of the drawing is corrected as an independent view (Section 7) and
its vanishing points are estimated (Section 7.2). If new elements

impose orthogonality constraints, these vanishing points affect the
center of projection. Thus, the user is demanded to choose whether
the eye position has to be changed. In this case, resolution of
orthogonalities and eye calibration (Section 7.3) are repeated for
the whole view. Therefore, the view would be completely recor-
rected and hence all the elementary 3D objects would be reeval-
uated. Thus, the user is advised to choose this alternative only if
complexity of the new part of the scene is comparable with the old
one. Otherwise, new orthogonal vanishing points are corrected so
that they would determine the previous eye position. Finally, only
the new elementary 3D objects are evaluated and hence the already
reconstructed part of the scene remains unchanged).

In the second case, if spatial structure of the old part of the scene is
changed after establishing new constraints and inferring their con-
sequences, we just repeat the whole reconstruction process from
scratch. Otherwise, old elementary 3D objects are declared as
known and the algorithm for formal resolution of constraints is ap-
plied. This algorithm takes into account only the new part of the
scene constraint graph and constructs the formal solution only for
the new elements so that it would satisfy to constraints linking them
with the already reconstructed ones. The same approach is applied
to the sketch correction. Next, new vanishing points are estimated
and the user is demanded to choose whether the old part of the view
has to be changed. Certainly, the user is advised to choose this alter-
native only if the new part is as complex as the old one. Otherwise,
new vanishing points are corrected so that it would determine the
already calculated eye position while points from the old part of the
view would intact. Finally, only the obtained new parts of the for-
mal correction and reconstruction plans are evaluated. Thus, while
the old part of the scene remains unchanged, constraints that relate
it with the new reconstructed part are satisfied (Figure 6).

Because new parts of a scene constraint graph are usually simpler
than the whole one and the previously obtained parts of a 3D model
remain unchanged, our approach allows to rapidly perform incre-
mental reconstructions and produce predictable results.

11. IMPLEMENTATION AND RESULTS

Our system has been implemented on PC workstations using C++
for the kernel and Java for the GUI.

11.1 Reconstruction from Sketch

The figure 7 represents an example of reconstruction from a single
imprecise hand-drawn perspective sketch. We used a drawing 7(a)
that was created by one of the authors of the paper, who is not a pro-
fessional architect. The most time-consuming part of the acquisi-
tion was the description of spatial structure of the scene. The scene
was represented by 12 primitives and 6 elementary objects (pillars
and windows), there were 12 constraints specified explicitly. The
user-assisted drawing and constraining phase took around 6 min-
utes.Once all the constraints were explicitly imposed or inferred,
the scene constraint graph contained 46 points and their 43 projec-
tions, 43 lines and 43 lines of sight, 9 planes and set approximately
four hundreds elementary incidence relations. Once the graph was
constructed, the model 7(c) was obtained in 1 second on the usual
P11 733 MHz workstation.

11.2 Application to Photographs

Our approach can be applied to photographs as well as to freehand
perspective sketches. For instance, the figure 8 represents an exam-
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Figure 5: Repeated reconstruction. (a) The initial view. (b) The initial 3D model. (c) The modified view. The left wall is enlarged. (d) The
corresponding changed 3D model. The model changes in a predictable manner.
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Figure 6: Incremental reconstruction. (a) The initial view of a building. (b) The initial 3D model. (c) The modified view. The annex with
pillars and walls that are parallel to the building is added. (d) The obtained 3D model. The old part of the scene remains unchanged, while

the parallelism constraints are satisfied.

ple of reconstruction from a single photograph. Because we have
only one image of the building 8(a), there is no any information
on its back face. On the other hand, it is possible to reconstruct
hidden parts of a scene once there are enough constraints on them
(Section 6). Thus, we may describe the back face and other ele-
ments of the building that are not visible on the photograph as we
imagine (Figure 8(b), light grey lines). Note that because projec-
tions of hidden 3D points are not used for the reconstruction, the
user may set hidden points in arbitrary convenient positions. The
3D model (Figure 8(c)) was obtained in three incremental stages.
First, the user described the basic shape of the building. Next, the
front entrance was detailed. Finally, windows in the front wall were
created. Three user-assisted phases took around 12 minutes in to-
tal. The scene constraint graph finally contained 70 points and their
57 projections, 82 lines and 57 lines of sight, 14 planes and sev-
eral hundreds elementary incidence relations. On the first stage, the
3D model was obtained in 1 second, two enriched models were ob-
tained in 1 second in total on the usual PI1l 733 MHz workstation.

12. CONCLUSION

We have presented a system to accurate and rapid reconstruction
of 3D models of architectural sites from perspective views, which
may be either freehand sketches or photographs, and constraints
that describe their spatial structure. Whereas we use only elemen-
tary objects and constraints to ensure homogeneous internal repre-
sentation, input of constraints is greatly simplified. Furthermore,
their consistency is ensured automatically. Thus, our system deliv-
ers simplicity of use as well as flexibility.

The usage of formal solutions allows to rapidly perform incre-
mental reconstructions with predictable results and to provide any

desired accuracy. The reconstruction is simplified by separating
correction of sketches to recover input errors and elevation of 3D
models from true perspective projections. Serialization of con-
straints and usage of local methods allow to avoid expensive nu-
merical computations and hence improves stability and ensures fast
response time.

The principle of serialization of constraints can be extended to other
metric relations, for instance, to constraints on ratios of distances.
For certain configurations, it is also possible to correct a sketch so
that such metric constraints would be satisfied in space. Because
metric constraints may be subject of contradictions with projective
or affine ones, they should be resolved in a specific order. We have
developed an algorithm to determine required order. Furthermore,
many constraints that seems to be metric and occur often in archi-
tectural scenes — for instance, transitions, central or plane symme-
tries — in fact can be decomposed into projective ones and hence
resolved with only the Grassmann-Cayley algebra.
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