
Fast Ray Tracing for Modern General Purpose CPU
Jim Hurley, Alexander Kapustin, Alexander Reshetov, Alexei Soupikov

Intel

Abstract

We present a study of the system implications of various
aspects of the classic Ray Tracing algorithm. We show
how these algorithms can be modified to yield the
highest performance on any given system, and present
some of the results that we obtained.

1. Introduction
Computer engineering is a tough business, due to
physical limitations of the current generation of
computers we are forced to overcome them with some
extra ingenuity, only to have a new generation of
computers come along for which all this extra effort is
overkill.
Perhaps, nowhere this process is more distinct, that in
compute graphics. Countless approaches to hidden
surface removal were washed away with an arrival of the
hardware z-buffer acceleration. Current trends of
extending programmability and functionality of graphical
devices will have, no doubt, no lesser effect on the
mainstream 3D computer graphics.
In this article, we will present the status of software ray
tracing acceleration techniques, compared with the
traditional graphics pipeline. We performed analysis of
real-time ray tracing (RTRT) performance requirements;
We will present a brief description of a global illumination
system with performance in the 2M ray segments/sec
range on a single general purpose IA-32 PC, and
speculate about the feasibility of general-purpose
processors for RTRT.

2. Performance
The major conceptual differences between the traditional
graphics pipeline and the ray-tracing approach are as
follows:
• Traditional pipeline: all (visible) objects in the scene

are processed one by one. The resulting image is
computed as a superposition of projections of
objects into the viewing plane.

• Ray-tracing: Rays are cast from the eye position into
the scene. The resulting image is computed by
filtering the resulting colors for all rays coming
though a particular pixel on the screen.

There are countless variations of these basic
approaches, we are primarily interested in the
performance behavior with respect to the number of
objects in the scene. For the sake of simplicity, we will
be talking only about tessellated polygonal objects and
designate N as the total number of triangles in the
scene.
For the traditional rasterization pipeline, it is hard to get
rid of O(N) dependency for the rendering time. Even if
most of the objects in the scene are not visible, they
have to be processed nevertheless. There are different
approaches to address this problem either through
computing visibility offline or with some advanced run
time computations [7].
At the same time, visibility determination is implicitly
embedded into ray tracing approach; you don’t have to
do anything else except to following the ray! Ray tracing
also offers great scalability due to various types of
parallelism, the simplicity of programming shading
computations and some other advantages, compared
with traditional graphics pipeline (see [1]).
However, the computational costs of ray tracing are very
high and until recently were not considered suitable for
hardware implementation [3].
It is well known, that by using data preprocessing, the
ray-object intersection time is proportional to O(log(N))
[2]. This is can be only be achieved with some geometric
data partitioning to reduce the number of intersection
tests from the naïve O(N) to a logarithmic value. The
pre-processing time, varies from O(N) for simple uniform
grids to O(N4) and higher for more elaborate schemes.
Let’s first consider a static scene. The rendering time will
be a multiplier of the following factors:
• Np – Pixels on a display. Let’s assume Np = 1024 *

1024.
• Nr – rays coming through any single pixel. Let’s

assume Nr = 5.
• Ns – secondary (shadow) rays per primary ray. It is

commonly agreed, that it is hard to achieve a good
quality with value of Ns less than 100.

• Nx – average number of ray/triangle intersection
tests.

• Tx – average processing time in CPU cycles for
ray/triangle intersection, including memory access.

• Tt – average traversal time in CPU cycles. Here we
will assume kd-tree spatial partitioning structures.

• For a well balanced acceleration structure, the
traversal time Tt should be approximately equal to
total time spent on intersection tests, which is NxTx.

The values Nx and Tx are strongly dependent on the
implementation of the intersection test and cannot be
estimated independently. We ran tests for two different
implementations:
1. Rays tested directly against individual triangles. In

this case, Tx ≈ 130 and Nx ≈ 10 for a scene with 106

polygons.
2. Vectorized code was used for the intersection. It

helped to reduce Tx to 50 cycles (CPU and memory
access), while Nx typically increases to 20.

These are approximate numbers for an average scene
with about one million triangles. It is clear that vector
instructions help improve the average processing time
for one triangle by ~2.5x, however, the overall
performance improvement computed as NxTx is
improved only about 30%. This is because vector
instructions require aligned data memory layout, in
addition, processing of 1, 2, 3, or 4 triangles takes
approximately the same time.
So, multiplying all these numbers and taking into
account the traversal time (approximately equal to the
intersection time), the processing of one frame should
require:
Nf = Np Nr Ns (NxTx +NxTx) ≈ 1012 cycles.
A rendering system with the goal of a constant frame
rate will necessarily involve the following steps:
1. The required modeling accuracy is estimated for

each region of space (ratio of triangles cast onto a
single visible pixel).

2. A spatial partition structure is created or updated,
using some pre-computed Multi-Resolution Mesh
(MRM) information. This step of the algorithm will
use only polygons at the required level of detail. It
seems possible to dynamically change objects,
represented as MRMs, without recomputing the
whole mesh.

3. The size of the spatial partitioning structure above,
will not depend on number of polygons in the scene,
but only on the screen resolution.

4. Consequently, the rendering will be performed in a
constant time.

This algorithm, relies on our ability to dynamically create
acceleration structures, without physically processing
every triangle in the scene. There are many examples
where this type of processing is almost trivial.

3. Spatial Subdivision
3.1. Memory & Performance

3D scenes may have thousands or millions of polygons.
Rendering these scenes requires repetition of some
elementary operations multiple times such as finding the
intersection of a sample ray with the scene geometry.
One way to increase the speed of these intersection
calculations is to reduce the number of primitives tested
for a given ray by pre-processing the geometry data and
storing this information in a dedicated data structure.
This data structure is usually called an “acceleration
structure” in the context of the field of global illumination.
Acceleration structures realize a trade-off between
memory storage, computation and perusal of a
database. This pre-processing may have to be
performed for every frame as the “acceleration structure”
effectively optimizes the way that rays are likely to pass
through the database of polygons, as the “camera”
moves, the ideal layout of the structure will change too.
It is important to note that as the size of the acceleration
structure increases, the relative performance
improvement becomes smaller and smaller. In Figure 1
below, the rendering time of a sample scene (Image 1) is
represented with respect to the size of the acceleration
structure. It is clear, that the rendering time is improved
greatly until the number of nodes in the acceleration
structure approaches ½ of the total triangles in the
scene. Due to the nature of the intersection operation,
most of the best “acceleration structures” are based on
some form of space partitioning. It was shown [9] that a
kd-tree consistently outperforms other partitioning
schemes.
Two major reasons for this can be summarized as
follows:

1. Any algorithm, which uses axis-aligned split
planes, can be converted into a kd-tree form.

2. Traversal of kd-trees can be implemented very
effectively on current PC architecture.

Different computer architectures may require different
approaches to optimal kd-tree creation, storing and
traversal, or even completely different structures. We will
analyze these issues later. Basically, there are 3 major
steps in using any acceleration structure: Creation,
Packing & Traversal.

Image 1. Sample scene 54K tri, 31 lights.

Figure 1. Render time Vs structure size
Kd-tree creation
Geometrically, a kd-tree can be represented as a binary
tree. To create a kd-tree, the following 2 operations are
repeated recursively.
1. One of the 3 axes (X,Y,Z) is chosen and some split

value on this axis is selected. The axis number and
split value defines a separation plane.

2. The first operation is repeated with all geometric
elements to the “left” of the separation plane and
with all elements to the “right” from this plane.

In Figure 2, the first separation plane is shown along
axis OY. This separation plane splits the original cell into
two. All triangles are color-coded, depending on weather
they end up in:

• The left sub-cell (blue)

• The right sub-cell (green)
• both (red)

To continue splitting, we will use blue and red triangles
with the left sub-cell and green and red triangles with the
right sub-cell. Figure 3 shows the results of multiple
splits for the same geometry. It is easy to see that some
of the cells are empty. This is a major advantage of the
kd-tree approach as the effective purging of empty
space is done automatically by the algorithm and a
traversal of empty cells costs almost nothing (see 0).

Figure 2. 1st separation plane, y = 18.9

Figure 3. After Multiple splits

3.2. Split Plane Selection
There are different approaches to the selection of the
separation plane, yielding different performance results.
However, there are some discrete heuristic approaches
with reasonable performance. This is usually based on a
rough estimation of the traversal cost for a built kd-tree.
The partition plane is chosen to minimize this cost. One

natural selection for the cost function is the total
rendering time for a particular scene. However, this
approach has some major shortcomings:
• Rendering time depends on not only how geometry

is partitioned, but also how structures are packed in
memory and traversed during run-time. It is
paramount to consider all packing and traversal
algorithms in terms of CPU cache performance.

• For static scenes, acceleration structures are reused
for different frames. One particular partitioning
scheme may exhibit very good performance for
some camera positions, but behave rather poorly for
other viewpoints.

• We suggest some very simple local approximation of
rendering time, which helps to find best split plane
and, at the same time, provides some automatic
termination criteria (whether to continue splitting a
cell or create a leaf node).

For all splits, we estimate the following delta,
approximating the improvement in the rendering time if
the split is made:
Costdelta = Costno-split - Costsplit
Costno-split = r12 * (tt + n12 * tx)
Costsplit = r12 * tt +

r1 * (tt + n1 * tx) +
r2 * (tt + n2 * tx)

(1)

where
n1 - triangles in one (let’s say left) sub-cell;
n2 - triangles in another (right) sub-cell;
n12 - triangles in un-split cell (n1 + n2 ≥ n12);
tt - average time to traverse a cell in kd-tree;
tx - average ray/triangle intersection time;
r1 - rays passing through left sub-cell;
r2 - rays passing through right sub-cell;
r12 - rays passing through un-split sub-cell
The values tt and tx include both CPU processing time
and memory access overhead and cannot be easily
computed directly. We will describe later a very simple
method of estimating these values using some linear
regression model.
Among all possible splits, the one that yields the best
positive value of Costdelta is chosen. If such a split does
not exist (all values of Costdelta are negative), then a
terminal leaf is created. During kd-tree traversal, all rays,
passing through this cell, will be tested against all n12
triangles.

By observing equation (1), it is easy to note that the
absolute values of tt and tx do not matter, only the ratio tt
/ tx. The same is true for the numbers of rays passing
through cells. In fact, the values of r can be
approximated with the area of the appropriate cell, as it
well known from the literature ([5], [9], [10])
The costs (1) are linearly dependent on the number of
triangles in the cells. Here are some further criteria:
1. Restrict maximum tree depth.
2. Restrict minimum cell size
3. Don’t create very small cells (by area or volume).
4. We can tilt expression (1) in favor of splits which

create some empty cells. By purging extra empty
space, we are improving global characteristics of the
acceleration structure. We found, that by reducing
the cost associated with empty splits by 20%, we will
get about 5% overall improvement.

5. We can consider ratio tt / tx not as a given value, but
rather as a parameter of the model.

6. There is nothing to prevent us from introducing
some additional parameters into the formula (1). For
example, we can use some exponential expressions
like areap, where p is some parameter.

By varying parameters 1-6, we can create different
acceleration structures. It may happen that some of
them will be better for a particular viewpoint or model.
Suppose we had a series of measurements with different
acceleration structures and accumulated the following:
Tr - total rendering time (Tr = [T1, T2, …Tn]);
Nt - traversed cells (vector of size n with each

component representing total number of traversed
cells in particular experiment);

Nx - number of intersection tests.
By neglecting the cost of shading and other extra
processing, we may assume that
Tr = Nt * tt + Nx * tx (2)
Note that, by definition, expressions for tt and tx comprise
CPU cost and “average” memory access cost. Now we
can solve the over-defined system of equations (2) to
find approx values of the unknown variables tt and tx.
For Image 1, we found the values for tt and tx to be 70.91
and 49.33 CPU cycles. It is possible to feed these values
back into equations (2) to estimate an error of these
estimations. For n = 150 (number of experiments), this
error was found to be about 2%, which is rather
remarkable, given the variability of operating
environment (Windows 2000) and different sizes of the
data sets.

For different scenes, the values for tt and tx will vary due
to the different cache behavior and different number of
polygons. Image 2 produced values of tt = 101.74 and tx =
101.74. The bigger values are primarily due to the bigger
size of the model. The ratio of tt to tx was found to be
1.4375 for Image 1 and 1.399 for Image2, remarkably
consistent.

Image 2. Bar scene (234K triangles, 69 lights)

3.3. Possible Split Planes
For static scenes, the pre-processing cost is amortized
among many frames. In a dynamic situation, we are
trying to minimize the total cost: acceleration structure
creation/update + rendering. For a scene containing N
triangles, the first term (creation) behaves, at best, as
O(N) (most likely O(N log(N)). At the same time,
rendering time is proportional to log(N). Consequently,
creation/rendering balance will be different for each
scene and will be dominated by the creation cost for very
big scenes. It will make sense then to use a very simple
approach for selecting the split planes.
One possible approach is to always choose the median
of the longest side. Even in this case, it may make sense
to evaluate a cost approximation as a way of
determining whether to stop or continue splitting.
Conceptually, the kd-tree creation algorithm is very
simple: among all possible splits one is selected, which
minimizes rendering cost. This operation is repeated
recursively, until termination criteria are met. Due to the
necessity of having a very effective kd-tree traversal
algorithm, only planes orthogonal to one of the three
axes are considered. So, to completely define a split, we
need to know its axis number and some position on it.
We will analyze 2 major approaches in finding possible
splits:

1. Vertex-based: only vertices are considered when
finding out possible split planes.

2. Intersection-based: triangle/cell intersections are
considered as well.

Figure 4. Sample cell and possible split positions

One of the simplest approaches to compute a set of
possible splits is represented in Figure 6. For the sake
of simplicity, everything is represented in 2D. We are
trying to define a set of possible splits for the red cell,
which contains triangles A, B, C, D, and E. If we
consider only the vertices, which are in the cell, the
possible splits will be represented by positions a, b, c, d,
e, f, and g. We then compute the cost approximation for
each split and choose the best one (among all 3 axes).
This approach works well for a while, however it has
some major drawbacks. For example, for the blue cell,
the possible set includes only one position – b. For the
cyan cell, this approach will not produce any candidate
split at all. If, however, we include triangle/cell
intersection points into the consideration, we may find
better splits. For the blue cell, it may be h, which creates
one empty cell and one cell containing 2 triangles.
To evaluate the cost function, we need to know the
number of triangles to the left and to the right of the split
(see equation (1)). Vertex projections can be used as a
crude approximation for this number. For example, if any
of the projections for a particular triangle are less than
the split value, we can assume that this triangle belongs
to the left sub-cell.
Another critical issue is what to do with triangles which
are entirely contained in a split plane (like triangle E on
Figure 4 for split plane f). Should it go to the left, right or
both sub-cells? Since we are trying to minimize the cost
expression (1), the following algorithm achieves this
goal:

Triangles, which are completely contained in a split
plane, go into the smaller sub-cell, except for the

vmin a h b i c d e f

E
1

2

3

5 6

7

8

1A
B

C

D

9

1
4

case when we can create an empty cell by moving
these triangles to the bigger sub-cell.

We experimented with the two different approaches to
find the split plane. The gains depend on whether
ray/triangle intersections are computed as 1-to-1 or 1-to-
4 (using SSE engine). In the first case, the gain is about
30%, 10% in the second. Since using SSE results in a
smaller value for tx – average ray/triangle intersection
time in equation (1), the cost-based termination criteria
will tend to create bigger leaf nodes with more triangles
in them. Therefore, in this case, finding the exact
triangle/cell intersections is less beneficial.
Another observation, confirmed in the literature, is that
accurately estimating the cost function is more important
for deeper levels of the tree, where cells are smaller.
Indeed, closer to the top of the tree, most of the triangles
are completely included into each cell (see red cell on
Figure), while at the bottom most of the triangles are
intersecting cell’s boundaries. Based on this, we may
adopt a hybrid approach: using vertex projections at
higher levels of the tree, while resorting to finding
intersections at lower levels.
Another cost function technique is based on restricting a
set of possible splits. To explain it, let’s look more
closely at expression (1). For each possible split, we
have to find the number of triangles to the left and to the
right of the split. It can be implemented using the
following three steps:
1. For each triangle, find candidate split positions and

store them in memory. Note that each triangle can
produce either 1 or 2 candidate positions, because
we are interested only in extreme positions.

2. An array of possible splits is sorted out.
3. We then loop through this array, computing the cost

function delta. For each entry, we immediately know
the split position and can easily compute the number
of triangles to the left and to the right of this position

Since these steps involve sorting, for a scene with N
triangles, the kd-tree creation algorithm will require
O(N Log2(N)) operations (the tree will have ~ Log(N)
levels, each level requiring ~ N Log(N) operations).
We can reduce the N Log(N) number of operations,
required by the sorting step by reducing the accuracy of
computations. If we use only the first k bits, sorting may
be completed in O(k n) operations [12]. One algorithm,
achieving this performance, is called Pigeonhole Sorting.
This can be easily implemented using a binning
approach. For a required accuracy of k bits, we split an
interval of possible splits [vmin, vmax] into 2k equal bins.
We will also need three arrays of size 2k+1, storing the
following values:

1. Candidate split value, closest to the k-th bin
boundary (bins are spaced equally, while candidate
values may not).

2. Cumulative values of number of triangles to the left
and to the right from the k-th split value.

All these values can be easily computed in the triangle
processing loop, similar to steps 1-3, described earlier.
To study how bin size influences performance, we
rendered Image 1 with different numbers of bins and
plotted the execution time on Figure 8. This graph shows
that for numbers of bins ≥ 26 = 32, it doesn’t really affect
run-time performance at all (smaller number of bins
requires less pre-processing time though).

Figure 5. Impact of binning size on performance
This effect clearly demonstrates the capacity for
adaptation of the kd-tree algorithm: even though it
cannot use the best possible split position at some level
due to the discrete nature of the binning method, it will
do so when the binning size decreases (due to the
smaller cell’s size).

3.4. Data Storage
Since any acceleration structure requires additional
memory, it is important to look for an optimal data layout.
There are two closely related characteristics of an
optimal layout:
1. Overall memory footprint is minimized.
2. The values, which most likely will be used together,

should be placed close to each other. Usually, when
the parent node of a kd-tree is accessed, one or
both children are accessed next.

Pursuing goal 1 per se is not enough, as poor data
layout may trash cache performance. The kd-tree
traversal algorithm, which always starts at the top of the
tree, requires only 2 values to be stored explicitly. They
are the axis number and the position of split plane.

The kd-tree can be stored as a complete binary tree
(each node having 2 children) computing the children’s
addresses on the fly. However, due to the nature of the
optimization criteria expressed by equation (1), kd-trees
for real scenes are not balanced. To effectively
represent unbalanced trees, addresses or offsets of
nodes may be used. If records for both children are kept
together, only one address field is required.
In our implementation, each kd-tree node is described by
2 4-byte fields. Internal nodes include the axis number,
split value and address of the left child. Leaf nodes
include the address of the first triangle in the leaf plus
the size of the data. Since all address fields are aligned
by 8-bytes, it can easily be combined with a 2-bit value,
representing the axis number.
Kd-tree Traversal
The kd-tree traversal procedure is the most time
consuming part of the GI code. It may take up to 75% of
all costs. Code optimization is critical to improve
performance. Essential points of this process are:
- use predicates to reduce the number of code branches;
- avoid recursive function calls;
- stack and memory layout optimization;

4. Intersection Test
Global illumination solutions based on the ray tracing
technique are considered to be expensive for the
following reasons:

a. ray-primitive intersection test is expensive
b. huge number of primitives tested by a given ray

for intersection.
The previous discussion describes the ways to address
issue (b) by reducing the number of primitives to be
tested using a space partitioning approach. Issue (a)
also deserves thorough consideration.
Lots of effort has been spent to find an efficient solution
to the ray-primitive intersection test. The most efficient
solutions pursue the point of balance between memory
accesses and the computations for any given platform.
Once this balance point is achieved exploiting data
parallelism is the way to increase performance further.
The next question coming into consideration is how to
vectorize the problem. Two straightforward ways are
observed. The first is to test multiple rays against one
primitive (so called N:1 approach). The second is testing
one ray against some number of primitives (1:N
approach correspondingly). The first approach allows for
using multiple types of primitives and seems scalable to
infinity. Though in practice there are certain limitations
imposed by platform architecture like

a. limited register (or fast memory) space doesn’t
allow to store long vectors,

b. non-random access to vector elements requires
data shuffling or repacking

c. data alignment requirements.
Trying to resolve these issues by using various shuffling
instructions usually steals all benefits given by
parallelism or makes the performance even worse. The
reasons for such performance degeneration lay in the
non-coherent control flows for the given set of rays and
in the SIMD nature of vector instructions present in
modern processors.
The 1:N approach is more favorable for SIMD usage
because the set of primitives can be formatted in
suitable way during scene preprocessing. There is one
limitation though, the algorithms should stick to one
primitive for complex object representation. So we use
triangles as one and only one allowed primitive.
Vectorized test takes 21 clock ticks/triangle if no
intersection happens and 46 in worst case (intersection),
while scalar code takes typically 160-120. Numbers
measured on PIV 1600Mhz processor.

5. Results
Fully functional GI code was implemented, covering all
of the results of the topics discussed previously. The
code was written in C++. The code works only with
triangulated objects, texturing (with mip-maps) is
supported. Point lights and spotlights are implemented.
The code was tested on 2.2GHz P4 machine (single
CPU). For testing purposes we used scenes courtesy of
Cornell and Saarland Universities. The testing results for
various scenes are shown in Figure 6 below.
Performance is measured as number of ray – scene
intersections per second.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

128 256 512 1024 2048
Resolution

ra
y/s

ec
*1

M

Taliesin
54202 tri
31 light
Bar
234370tri
69light
Room
16232tri
1light
Theatre
112309tri
1light
Office
34002tri
0 light

Figure 5. Testing results for various scenes
As we can see, performance is only weakly dependent
upon scene size thanks to the sub linear time of ray

scene intersection for Kd-trees. The number of lights
multiplies the cost of shadow rays. Large images have
more coherent primary rays, so performance efficiency
slightly increases with increasing image size.

Image 2. Bar scene with specular component

Image 3. Room scene with lambertian materials

Image 4. Room scene: lambertian & specular effects.

6. Conclusion and Future Work
On modern desktop PCs it is possible to achieve approx.
2M Rayseg/S, performance varies by scene. This
performance is achieved by paying very careful attention
to data structure creation, packing and perusal, also
important are generating rays that maximize likely
coherency of data fetched from these data structures,
additional benefit is achieved by exploiting vectorization
opportunities. It would be especially interesting to
analyze hybrid approach: N:1 for tree traversal and 1:N
for intersection test. In the past, the achievable
performance was much lower, and acceleration
structures were pre-computed and used only to generate
static scenes. With this kind of performance now
interactive frame rates can be achieved, and all of a
sudden the cost of building acceleration structures on
the fly becomes an important issue. Hence, our next
steps will be to investigate methods by which we can
build such data structures efficiently while not losing too
much of the performance that an optimally constructed
acceleration structure would yield.

7. Bibliography

1. Interactive Rendering with Coherent Ray Tracing, Ingo

Wald, Philipp Slusallek, Carsten Benthin, EG 2001
Proceedings

2. Stabbing and ray shooting in 3 dimensional space, Marco
Pellegrini, Proc. 6th Symp. Computational Geometry,
ACM, Jun 1990, pp. 177-186

3. Ray Tracing on Programmable Graphics Hardware,
Timothy J. Purcell Ian Buck William R. Mark, Pat
Hanrahan, Processing of Siggraph 2002

4. State of the Art in Interactive Ray Tracing, Ingo Wald and
Philipp Slusallek, Proceedings of Eurographics 2001.

5. LCTS: Ray Shooting using Longest Common Traversal
Sequences, Vlastimil Havran, Jiri Bittner, Proceedings of
Eurographics (EG'00)

6. On Improving Kd-Trees For Ray Shooting, Vlastimil
Havran Jiri Bittner, http://www.mpi-
sb.mpg.de/~havran/ARTICLES/wscg2002.pdf

7. Visibility Preprocessing for Urban Scenes using Line
Space Subdivision, Jiri Bittner, Peter Wonka, Michael
Wimmer, Proceedings of Pacific Graphics (PG'01)

8. The IBM T221 Display,
http://www.monitoroutlet.com/342898.html

9. Heuristic Ray Shooting Algorithms, Ph.D. Thesis by
Vlastimil Havran, November 2000

10. MacDonald,J, Booth,K: Heuristics for ray tracing using
space subdivision, The Visual Computer, Vol. 6, No. 3, pp.
153--166, 1990

11. Intel® Software Development Products,
http://developer.intel.com/software/products/compilers/c60
/index.htm

12. Wikipedia: Sort Algorithm.
http://www.wikipedia.com/wiki/Sort+algorithm

http://www.wikipedia.com/wiki/Sort+algorithm
http://developer.intel.com/software/products/compilers/c60/index.htm
http://developer.intel.com/software/products/compilers/c60/index.htm
http://www.monitoroutlet.com/342898.html
http://www.mpi-sb.mpg.de/~havran/ARTICLES/wscg2002.pdf
http://www.mpi-sb.mpg.de/~havran/ARTICLES/wscg2002.pdf

	Fast Ray Tracing for Modern General Purpose CPU
	Abstract

	1. Introduction
	2. Performance
	3. Spatial Subdivision
	3.1. Memory & Performance
	3.2. Split Plane Selection
	3.3. Possible Split Planes
	3.4. Data Storage
	4. Intersection Test
	5. Results
	6. Conclusion and Future Work
	7. Bibliography

