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Abstract 
 
We present a study of the system implications of various 
aspects of the classic Ray Tracing algorithm. We show 
how these algorithms can be modified to yield the 
highest performance on any given system, and present 
some of the results that we obtained. 

1. Introduction  
Computer engineering is a tough business, due to 
physical limitations of the current generation of 
computers we are forced to overcome them with some 
extra ingenuity, only to have a new generation of 
computers come along for which all this extra effort is 
overkill.  
Perhaps, nowhere this process is more distinct, that in 
compute graphics. Countless approaches to hidden 
surface removal were washed away with an arrival of the 
hardware z-buffer acceleration. Current trends of 
extending  programmability and functionality of graphical 
devices will have, no doubt, no lesser effect on the 
mainstream 3D computer graphics.  
In this article, we will present the status of software ray 
tracing acceleration techniques, compared with the 
traditional graphics pipeline. We performed analysis of 
real-time ray tracing (RTRT) performance requirements; 
We will present a brief description of a global illumination 
system with performance in the 2M ray segments/sec 
range on a single general purpose IA-32 PC, and 
speculate about the feasibility of general-purpose 
processors for RTRT. 

2. Performance 
The major conceptual differences between the traditional 
graphics pipeline and the ray-tracing approach are as 
follows: 
• Traditional pipeline: all (visible) objects in the scene 

are processed one by one. The resulting image is 
computed as a superposition of projections of 
objects into the viewing plane. 

• Ray-tracing: Rays are cast from the eye position into 
the scene. The resulting image is computed by 
filtering the resulting colors for all rays coming 
though a particular pixel on the screen. 

 
There are countless variations of these basic 
approaches, we are primarily interested in the 
performance behavior with respect to the number of 
objects in the scene. For the sake of simplicity, we will 
be talking only about tessellated polygonal objects and 
designate N as the total number of triangles in the 
scene.  
For the traditional rasterization pipeline, it is hard to get 
rid of O(N) dependency for the rendering time. Even if 
most of the objects in the scene are not visible, they 
have to be processed nevertheless. There are different 
approaches to address this problem either through 
computing visibility offline or with some advanced run 
time computations [7]. 
At the same time, visibility determination is implicitly 
embedded into ray tracing approach; you don’t have to 
do anything else except to following the ray! Ray tracing 
also offers great scalability due to various types of 
parallelism, the simplicity of programming shading 
computations and some other advantages, compared 
with traditional graphics pipeline (see [1]). 
However, the computational costs of ray tracing are very 
high and until recently were not considered suitable for 
hardware implementation [3].  
It is well known, that by using data preprocessing, the 
ray-object intersection time is proportional to O(log(N)) 
[2]. This is can be only be achieved with some geometric 
data partitioning to reduce the number of intersection 
tests from the naïve O(N) to a logarithmic value. The 
pre-processing time, varies from O(N) for simple uniform 
grids to O(N4) and higher for more elaborate schemes.  
Let’s first consider a static scene. The rendering time will 
be a multiplier of the following factors: 
• Np – Pixels on a display. Let’s assume Np = 1024 * 

1024. 
• Nr – rays coming through any single pixel. Let’s 

assume Nr = 5. 
• Ns – secondary (shadow) rays per primary ray. It is 

commonly agreed, that it is hard to achieve a good 
quality with value of Ns less than 100. 

• Nx – average number of ray/triangle intersection 
tests. 



• Tx – average processing time in CPU cycles for 
ray/triangle intersection, including memory access. 

• Tt – average traversal time in CPU cycles. Here we 
will assume kd-tree spatial partitioning structures. 

• For a well balanced acceleration structure, the 
traversal time Tt should be approximately equal to 
total time spent on intersection tests, which is NxTx.

The values Nx and Tx are strongly dependent on the 
implementation of the intersection test and cannot be 
estimated independently. We ran tests for two different 
implementations: 
1. Rays tested directly against individual triangles. In 

this case, Tx ≈ 130 and Nx ≈ 10 for a scene with 106

polygons. 
2. Vectorized code was used for the intersection. It 

helped to reduce Tx to 50 cycles (CPU and memory 
access), while Nx typically increases to 20. 

These are approximate numbers for an average scene 
with about one million triangles. It is clear that vector 
instructions help improve the average processing time 
for one triangle by ~2.5x, however, the overall 
performance improvement computed as NxTx is 
improved only about 30%. This is because vector 
instructions require aligned data memory layout, in 
addition, processing of 1, 2, 3, or 4 triangles takes 
approximately the same time. 
So, multiplying all these numbers and taking into 
account the traversal time (approximately equal to the 
intersection time), the processing of one frame should 
require: 
Nf = Np Nr Ns (NxTx +NxTx) ≈ 1012 cycles. 
A rendering system with the goal of a constant frame 
rate will necessarily involve the following steps: 
1. The required modeling accuracy is estimated for 

each region of space (ratio of triangles cast onto a 
single visible pixel).  

2. A spatial partition structure is created or updated, 
using some pre-computed Multi-Resolution Mesh 
(MRM) information. This step of the algorithm will 
use only polygons at the required level of detail. It 
seems possible to dynamically change objects, 
represented as MRMs, without recomputing the 
whole mesh.  

3. The size of the spatial partitioning structure above, 
will not depend on number of polygons in the scene, 
but only on the screen resolution. 

4. Consequently, the rendering will be performed in a 
constant time. 

This algorithm, relies on our ability to dynamically create 
acceleration structures, without physically processing 
every triangle in the scene. There are many examples 
where this type of processing is almost trivial.   

3. Spatial Subdivision  
3.1. Memory & Performance  

3D scenes may have thousands or millions of polygons. 
Rendering these scenes requires repetition of some 
elementary operations multiple times such as finding the 
intersection of a sample ray with the scene geometry. 
One way to increase the speed of these intersection 
calculations is to reduce the number of primitives tested 
for a given ray by pre-processing the geometry data and 
storing this information in a dedicated data structure. 
This data structure is usually called an “acceleration 
structure” in the context of the field of global illumination.   
Acceleration structures realize a trade-off between 
memory storage, computation and perusal of a 
database. This pre-processing may have to be 
performed for every frame as the “acceleration structure” 
effectively optimizes the way that rays are likely to pass 
through the database of polygons, as the “camera” 
moves, the ideal layout of the structure will change too. 
It is important to note that as the size of the acceleration 
structure increases, the relative performance 
improvement becomes smaller and smaller. In Figure 1 
below, the rendering time of a sample scene (Image 1) is 
represented with respect to the size of the acceleration 
structure. It is clear, that the rendering time is improved 
greatly until the number of nodes in the acceleration 
structure approaches ½ of the  total triangles in the 
scene. Due to the nature of the intersection operation, 
most of the best “acceleration structures” are based on 
some form of space partitioning. It was shown [9] that a 
kd-tree consistently outperforms other partitioning 
schemes. 
Two major reasons for this can be summarized as 
follows: 

1. Any algorithm, which uses axis-aligned split 
planes, can be converted into  a kd-tree form.  

2. Traversal of kd-trees can be implemented very 
effectively on current PC architecture. 

Different computer architectures may require different 
approaches to optimal kd-tree creation, storing and 
traversal, or even completely different structures. We will 
analyze these issues later. Basically, there are 3 major 
steps in using any acceleration structure: Creation, 
Packing & Traversal. 



Image 1. Sample scene 54K tri, 31 lights.

Figure 1. Render time Vs structure size 
Kd-tree creation 
Geometrically, a kd-tree can be represented as a binary 
tree. To create a kd-tree, the following 2 operations are 
repeated recursively. 
1. One of the 3 axes (X,Y,Z) is chosen and some split 

value on this axis is selected. The axis number and 
split value defines a separation plane. 

2. The first operation is repeated with all geometric 
elements to the “left” of the separation plane and 
with all elements to the “right” from this plane. 

In Figure 2, the first separation plane is shown along 
axis OY. This separation plane splits the original cell into 
two. All triangles are color-coded, depending on weather 
they end up in: 

• The left sub-cell  (blue) 

• The right sub-cell (green) 
• both (red) 

To continue splitting, we will use blue and red triangles 
with the left sub-cell and green and red triangles with the 
right sub-cell. Figure 3 shows the results of multiple 
splits for the same geometry. It is easy to see that some 
of the cells are empty. This is a major advantage of the 
kd-tree approach as the effective purging of empty 
space is done automatically by the algorithm and a 
traversal of empty cells costs almost nothing (see 0). 

Figure 2. 1st separation plane, y = 18.9 

Figure 3. After Multiple splits 

3.2. Split Plane Selection 
There are different approaches to the selection of the 
separation plane, yielding different performance results. 
However, there are some discrete heuristic approaches 
with reasonable performance. This is usually based on a 
rough estimation of the traversal cost for a built kd-tree. 
The partition plane is chosen to minimize this cost. One 



natural selection for the cost function is the total 
rendering time for a  particular scene. However, this 
approach has some major shortcomings: 
• Rendering time depends on not only how geometry 

is partitioned, but also how structures are packed in 
memory and traversed during run-time. It is 
paramount to consider all packing and traversal 
algorithms in terms of CPU cache performance. 

• For static scenes, acceleration structures are reused 
for different frames. One particular partitioning 
scheme may exhibit very good performance for 
some camera positions, but behave rather poorly for 
other viewpoints.  

• We suggest some very simple local approximation of 
rendering time, which helps to find best split plane 
and, at the same time, provides some automatic 
termination criteria (whether to continue splitting a 
cell or create a leaf node). 

For all splits, we estimate the following delta, 
approximating the improvement in the rendering time if 
the split is made: 
Costdelta = Costno-split - Costsplit 
Costno-split = r12 * (tt + n12 * tx)
Costsplit = r12 * tt +

r1 * (tt + n1 * tx) +
r2 * (tt + n2 * tx)

(1)

where 
n1 - triangles in one (let’s say left) sub-cell; 
n2 - triangles in another (right) sub-cell; 
n12 - triangles in un-split cell (n1 + n2 ≥ n12); 
tt - average time to traverse a cell in kd-tree; 
tx - average ray/triangle intersection time; 
r1 - rays passing through left sub-cell; 
r2 - rays passing through right sub-cell; 
r12 - rays passing through un-split sub-cell 
The values tt and tx include both CPU processing time 
and memory access overhead and cannot be easily 
computed directly. We will describe later a very simple 
method of estimating these values using some linear 
regression model. 
Among all possible splits, the one that yields the best 
positive value of Costdelta is chosen. If such a split does 
not exist (all values of Costdelta are negative), then a 
terminal leaf is created. During kd-tree traversal, all rays, 
passing through this cell, will be tested against all n12 
triangles. 

By observing equation (1), it is easy to note that the 
absolute values of tt and tx do not matter, only the ratio tt
/ tx. The same is true for the numbers of rays passing 
through cells. In fact, the values of r can be 
approximated with the area of the appropriate cell, as it 
well known from the literature ([5], [9], [10]) 
The costs (1) are linearly dependent on the number of 
triangles in the cells. Here are some further criteria: 
1. Restrict maximum tree depth.  
2. Restrict minimum cell size  
3. Don’t create very small cells (by area or volume).  
4. We can tilt expression (1) in favor of splits which 

create some empty cells. By purging extra empty 
space, we are improving global characteristics of the 
acceleration structure. We found, that by reducing 
the cost associated with empty splits by 20%, we will 
get about 5% overall improvement. 

5. We can consider ratio tt / tx not as a given value, but 
rather as a parameter of the model. 

6. There is nothing to prevent us from introducing 
some additional parameters into the formula (1). For 
example, we can use some exponential expressions 
like areap, where p is some parameter. 

By varying parameters 1-6, we can create different 
acceleration structures. It may happen that some of 
them will be better for a particular viewpoint or model. 
Suppose we had a series of measurements with different 
acceleration structures and accumulated the following: 
Tr - total rendering time (Tr = [T1, T2, …Tn]); 
Nt - traversed cells (vector of size n with each 

component representing total number of traversed 
cells in particular experiment); 

Nx - number of intersection tests. 
By neglecting the cost of shading and other extra 
processing, we may assume that 
Tr = Nt * tt + Nx * tx (2)
Note that, by definition, expressions for tt and tx comprise 
CPU cost and “average” memory access cost. Now we 
can solve the over-defined system of equations (2) to 
find approx values of the unknown variables tt and tx.
For Image 1, we found the values for tt and tx to be 70.91 
and 49.33 CPU cycles. It is possible to feed these values 
back into equations (2) to estimate an error of these 
estimations. For n = 150 (number of experiments), this 
error was found to be about 2%, which is rather 
remarkable, given the variability of operating 
environment (Windows 2000) and different sizes of the 
data sets. 



For different scenes, the values for tt and tx will vary due 
to the different cache behavior and different number of 
polygons. Image 2 produced values of tt = 101.74 and tx =
101.74. The bigger values are primarily due to the bigger 
size of the model. The ratio of tt to tx was found to be 
1.4375 for Image 1 and 1.399 for Image2, remarkably 
consistent. 

Image 2. Bar scene (234K triangles, 69 lights) 

3.3. Possible Split Planes 
For static scenes, the pre-processing cost is amortized 
among many frames. In a dynamic situation, we are 
trying to minimize the total cost: acceleration structure 
creation/update + rendering. For a scene containing N 
triangles, the first term (creation) behaves, at best, as 
O(N) (most likely O(N log(N)). At the same time, 
rendering time is proportional to log(N). Consequently, 
creation/rendering balance will be different for each 
scene and will be dominated by the creation cost for very 
big scenes. It will make sense then to use a very simple 
approach for selecting the split planes.  
One possible approach is to always choose the median 
of the longest side. Even in this case, it may make sense 
to evaluate a cost approximation as a way of 
determining whether to stop or continue splitting.  
Conceptually, the kd-tree creation algorithm is very 
simple: among all possible splits one is selected, which 
minimizes rendering cost. This operation is repeated 
recursively, until termination criteria are met. Due to the 
necessity of having a very effective kd-tree traversal 
algorithm, only planes orthogonal to one of the three 
axes are considered. So, to completely define a split, we 
need to know its axis number and some position on it. 
We will analyze 2 major approaches in finding possible 
splits: 

1. Vertex-based: only vertices are considered when 
finding out possible split planes. 

2. Intersection-based: triangle/cell intersections are 
considered as well. 

Figure 4. Sample cell and possible split positions  
 

One of the simplest approaches to compute a set of 
possible splits is represented in Figure 6. For the sake 
of simplicity, everything is represented in 2D. We are 
trying to define a set of possible splits for the red cell, 
which contains triangles A, B, C, D, and E. If we 
consider only the vertices, which are in the cell, the 
possible splits will be represented by positions a, b, c, d, 
e, f, and g. We then compute the cost approximation for 
each split and choose the best one (among all 3 axes). 
This approach works well for a while, however it has 
some major drawbacks. For example, for the blue cell, 
the possible set includes only one position – b. For the 
cyan cell, this approach will not produce any candidate 
split at all. If, however, we include triangle/cell 
intersection points into the consideration, we may find 
better splits.  For the blue cell, it may be h, which creates 
one empty cell and one cell containing 2 triangles. 
To evaluate the cost function, we need to know the 
number of triangles to the left and to the right of the split 
(see equation (1)).  Vertex projections can be used as a 
crude approximation for this number. For example, if any 
of the projections for a particular triangle are less than 
the split value, we can assume that this triangle belongs 
to the left sub-cell.  
Another critical issue is what to do with triangles which 
are entirely contained in a split plane (like triangle E on 
Figure 4 for split plane f). Should it go to the left, right or 
both sub-cells?  Since we are trying to minimize the cost 
expression (1), the following algorithm achieves this 
goal: 

Triangles, which are completely contained in a split 
plane, go into the smaller sub-cell, except for the 
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case when we can create an empty cell by moving 
these triangles to the bigger sub-cell. 

We experimented with the two different approaches to 
find the split plane. The gains depend on whether 
ray/triangle intersections are computed as 1-to-1 or 1-to-
4 (using SSE engine). In the first case, the gain is about 
30%, 10% in the second. Since using SSE results in a 
smaller value for tx – average ray/triangle intersection 
time in equation (1), the cost-based termination criteria 
will tend to create bigger leaf nodes with more triangles 
in them. Therefore, in this case, finding the exact 
triangle/cell intersections is less beneficial. 
Another observation, confirmed in the literature, is that 
accurately estimating the cost function is more important 
for deeper levels of the tree, where cells are smaller. 
Indeed, closer to the top of the tree, most of the triangles 
are completely included into each cell (see red cell on 
Figure ), while at the bottom most of the triangles are 
intersecting cell’s boundaries. Based on this, we may 
adopt a hybrid approach: using vertex projections at 
higher levels of the tree, while resorting to finding 
intersections at lower levels. 
Another cost function technique is based on restricting a 
set of possible splits. To explain it, let’s look more 
closely at expression (1). For each possible split, we 
have to find the number of triangles to the left and to the 
right of the split. It can be implemented using the 
following three steps: 
1. For each triangle, find candidate split positions and 

store them in memory. Note that each triangle can 
produce either 1 or 2 candidate positions, because 
we are interested only in extreme positions. 

2. An array of possible splits is sorted out. 
3. We then loop through this array, computing the cost 

function delta. For each entry, we immediately know 
the split position and can easily compute the number 
of triangles to the left and to the right of this position  

Since these steps involve sorting, for a scene with N 
triangles, the kd-tree creation algorithm will require 
O(N Log2(N)) operations (the tree will have ~ Log(N) 
levels, each level requiring ~ N Log(N) operations). 
We can reduce the N Log(N) number of operations, 
required by the sorting step by reducing the accuracy of 
computations. If we use only the first k bits, sorting may 
be completed in O(k n)  operations [12]. One algorithm, 
achieving this performance, is called Pigeonhole Sorting. 
This can be easily implemented using a binning 
approach. For a required accuracy of k bits, we split an 
interval of possible splits [vmin, vmax] into 2k equal bins. 
We will also need three arrays of size 2k+1, storing the 
following values: 

1. Candidate split value, closest to the k-th bin 
boundary (bins are spaced equally, while candidate 
values may not). 

2. Cumulative values of number of triangles to the left 
and to the right from the k-th split value. 

All these values can be easily computed in the triangle 
processing loop, similar to steps 1-3, described earlier. 
To study how bin size influences performance, we 
rendered Image 1 with different numbers of bins and 
plotted the execution time on Figure 8. This graph shows 
that for numbers of bins ≥ 26 = 32, it doesn’t really affect 
run-time performance at all (smaller number of bins 
requires less pre-processing time though). 

Figure 5. Impact of binning size on performance  
This effect clearly demonstrates the capacity for 
adaptation of the kd-tree algorithm: even though it 
cannot use the best possible split position at some level 
due to the discrete nature of the binning method, it will 
do so when the binning size decreases (due to the 
smaller cell’s size). 

3.4. Data Storage 
Since any acceleration structure requires additional 
memory, it is important to look for an optimal data layout. 
There are two closely related characteristics of an 
optimal layout: 
1. Overall memory footprint is minimized. 
2. The values, which most likely will be used together, 

should be placed close to each other. Usually, when 
the parent node of a kd-tree is accessed, one or 
both children are accessed next. 

Pursuing goal 1 per se is not enough, as poor data 
layout may trash cache performance. The kd-tree 
traversal algorithm, which always starts at the top of the 
tree, requires only 2 values to be stored explicitly. They 
are the axis number and the position of split plane. 



The kd-tree can be stored as a complete binary tree 
(each node having 2 children) computing the children’s 
addresses on the fly. However, due to the nature of the 
optimization criteria expressed by equation (1), kd-trees 
for real scenes are not balanced. To effectively 
represent unbalanced trees, addresses or offsets of 
nodes may be used. If records for both children are kept 
together, only one address field is required.  
In our implementation, each kd-tree node is described by 
2 4-byte fields. Internal nodes include the axis number, 
split value and address of the left child. Leaf nodes 
include the address of the first triangle in the leaf plus 
the size of the data. Since all address fields are aligned 
by 8-bytes, it can easily be combined with a 2-bit value, 
representing the axis number.  
Kd-tree Traversal 
The kd-tree traversal procedure is the most time 
consuming part of the GI code. It may take up to 75% of 
all costs. Code optimization is critical to improve 
performance. Essential points of this process are: 
- use predicates to reduce the number of code branches; 
- avoid recursive function calls; 
- stack and memory layout optimization; 

4. Intersection Test 
Global illumination solutions based on the ray tracing 
technique are considered to be expensive for the  
following reasons: 

a. ray-primitive intersection test is expensive  
b. huge number of primitives tested by a given ray 

for intersection. 
The previous discussion describes the ways to address 
issue (b) by reducing the number of primitives to be 
tested using a space partitioning approach. Issue (a) 
also deserves thorough consideration. 
Lots of effort has been spent to find an efficient solution 
to the ray-primitive intersection test. The most efficient 
solutions pursue the point of balance between memory 
accesses and the computations for any given platform. 
Once this balance point is achieved exploiting data 
parallelism is the way to increase performance further. 
The next question coming into consideration is how to 
vectorize the problem. Two straightforward ways are 
observed. The first is to test multiple rays against one 
primitive (so called N:1 approach). The second is testing 
one ray against some number of primitives (1:N 
approach correspondingly). The first approach allows for 
using multiple types of primitives and seems scalable to 
infinity. Though in practice there are certain limitations 
imposed by platform architecture like  

a. limited register (or fast memory) space doesn’t 
allow to store long vectors, 

b. non-random access to vector elements requires 
data shuffling or repacking 

c. data alignment requirements. 
Trying to resolve these issues by using various shuffling 
instructions usually steals all benefits given by 
parallelism or makes the performance even worse. The 
reasons for such performance degeneration lay in the 
non-coherent control flows for the given set of rays and 
in the SIMD nature of vector instructions present in 
modern processors. 
The 1:N approach is more favorable for SIMD usage 
because the set of primitives can be formatted in 
suitable way during scene preprocessing. There is one 
limitation though, the algorithms should stick to one 
primitive for complex object representation. So we use 
triangles as one and only one allowed primitive. 
Vectorized test takes 21 clock ticks/triangle if no 
intersection happens and 46 in worst case (intersection), 
while scalar code takes typically 160-120. Numbers 
measured on PIV 1600Mhz processor. 

5. Results 
Fully functional GI code was implemented, covering all 
of the results of the topics discussed previously. The 
code was written in C++. The code works only with 
triangulated objects, texturing (with mip-maps) is 
supported. Point lights and spotlights are implemented. 
The code was tested on 2.2GHz P4 machine (single 
CPU). For testing purposes we used scenes courtesy of 
Cornell and Saarland Universities. The testing results for 
various scenes are shown in Figure 6 below. 
Performance is measured as number of ray – scene 
intersections per second. 
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Figure 5. Testing results for various scenes 
As we can see, performance is only weakly dependent 
upon scene size thanks to the sub linear time of ray 



scene intersection for Kd-trees. The number of lights 
multiplies the cost of shadow rays. Large images have 
more coherent primary rays, so performance efficiency 
slightly increases with increasing image size. 

Image 2. Bar scene with specular component 

Image 3. Room scene with lambertian materials 

Image 4. Room scene: lambertian & specular effects.  

6. Conclusion and Future Work 
On modern desktop PCs it is possible to achieve approx. 
2M Rayseg/S, performance varies by scene. This 
performance is achieved by paying very careful attention 
to data structure creation, packing and perusal, also 
important are generating rays that maximize likely 
coherency of data fetched from these data structures, 
additional benefit is achieved by exploiting vectorization 
opportunities. It would be especially interesting to 
analyze hybrid approach: N:1 for tree traversal and 1:N 
for intersection test. In the past, the achievable 
performance was much lower, and acceleration 
structures were pre-computed and used only to generate 
static scenes. With this kind of performance now 
interactive frame rates can be achieved, and all of a 
sudden the cost of building acceleration structures on 
the fly becomes an important issue. Hence, our next 
steps will be to investigate methods by which we can 
build such data structures efficiently while not losing too 
much of the performance that an optimally constructed 
acceleration structure would yield. 
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