Physical Modeling for Games

Michael Shantz and Alexander Reshetov

Intel Corporation

May 5, 1998

Abstract

There is general agreement in the industry that physically based modeling will become more and more prevalent in games of the future. This paper presents the background for, and describes the design and implementation of the structurally recursive forward dynamics algorithm for articulated bodies as an extension to a game engine based on an object oriented scene manager (ISM). The method allows for systems with kinematic loop constraints, which can be used to simulate mechanisms and special effects such as structural disintegration. The dynamics uses the spatial vector notation of Featherstone, Lilly, Brandl, Roberson, and others. A spring damper method is used to correct for the gradual drift in the constrained directions due to integrator error. Optimizations include tuning the underlying linear algebra and matrix package, grouping matrix storage for efficient memory access on Intel platforms, multithreading for parallel behaviors, adaptive stepsize integrators, behavioral level of detail, and efficient collision detection based on the oriented bounding box (OBB) algorithm.

Keywords: computer animation, dynamic simulation, robotics, articulated body dynamics.

Introduction

The mathematics developed by industrial robotics simulation work are finding applications in computer graphics for the realistic animation of virtual creatures. In particular, the forward dynamics algorithms, which compute the motion of articulated bodies given the joint torque and external force inputs, offer a reasonably complete physical model for animation. There are two important approaches to the solution of the forward dynamics problem. The reduced or generalized coordinate approach (Featherstone, Brandl, Lilly, Orin, Lathrop) uses structural recursion to solve the problem in a reduced coordinate space such as the space of joint angles. The maximal coordinate approach (Baraff) uses Lagrange multipliers to solve a constraint system in the 6 degree of freedom motion space. Both methods yield O(n) algorithms. The structurally recursive method is the most efficient in floating point operations but the Lagrange multiplier approach may offer better memory access locality and cache performance. This paper provides a tutorial base for the physics involved in either approach, presents the structurally recursive algorithm and then describes a modular set of objects for constructing an articulated body and simulating its dynamics. We deal with a set of rigid bodies connected by joints. In the simple case where there are no closed loops of connected bodies the algorithm is quite simple. The Brandl algorithm for the case with closed loops is also discussed and is considerably more complex. A physical model of a steam engine having multiple loops is shown. We discuss issues related to numerical integration, integrator drift, and performance optimizations.

Basic Concepts

The variables in dynamics are velocities, accelerations, forces and inertias. Spatial vectors are used to represent these quantities. Since multibody systems become quite complex, it is important to have a consistent and complete notation. In particular the notation should always explicitly indicate the coordinate frame in which the variable is expressed (decomposed).

A rigid body i has a local coordinate frame i which is fixed in the body. The geometry of the body is typically expressed in these local coordinates. The center of mass is also expressed in frame i. The body may experience angular and linear velocity and acceleration. A rigid body in 3 dimensions has 6 degrees of freedom of motion, 3 angular and 3 linear. We use spatial vector notation (Featherstone) to represent this motion.

1. Spatial Vectors

Spatial velocity is a column vector with 3 angular and 3 linear components. The velocity of body i expressed in frame j is given by

[image: image45.jpg]

where (is a vector specifying the axis of rotation. The length of (is radians per second. The linear velocity (is a vector specifying the direction of the velocity. The length of (is meters per second.

Spatial acceleration is a column vector with 3 angular and 3 linear components. The acceleration of body i expressed in frame j is given by

[image: image2.wmf][

]

T

z

y

x

z

y

x

j

a

a

a

α

α

α

a

=

i

 EMBED Equation.2

where (is a vector specifying the axis of angular acceleration whose length is in radians per second2. The linear acceleration a is a vector specifying the direction of the acceleration. The length of a gives the amplitude of the acceleration in meters per second2.

Spatial force is also a column vector with 3 components of torque and 3 linear components. The force on body i expressed in frame j is given by

[image: image3.wmf][

]

T

z

y

x

z

y

x

j

f

f

f

τ

τ

τ

f

=

i

where (is a vector specifying the axis about which the torque is applied. The length of (gives the amplitude of the torque in newton meters (kilogram meters2 per second2). The linear force f is a vector specifying the direction of the force. The length of f gives the amplitude of the force in kilogram meters per second2.

2. The cross operator ~

It is convenient to represent the cross product of 2 vectors in matrix equations where the cross product operation is separated from the vector it operates on. The cross operator ~ is defined by

[image: image4.wmf]T

b

~

=

b

~

re

 whe

a;

b

a

b

~

-

=

ú

ú

û

ù

ê

ê

ë

é

´

=

0

b

1

b

-

2

b

-

1

0

b

3

b

2

b

-

3

0

Notice that its transpose is its negation. The development below will use this operator.
[image: image5.wmf]ú

û

ù

ê

ë

é

a

b

a

~

~

0

~

=

s

~

, is the spatial cross operator for spatial vectors
[image: image6.wmf]ú

û

ù

ê

ë

é

b

a

=

s

.

3. Transforming Spatial Vectors

A spatial vector jfi expressed in coordinate frame j may be expressed in frame k by transforming the spatial vector by the 6x6 spatial transform matrix kCj given by

[image: image7.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

T

T

T

1

-

j

k

i

j

j

k

i

k

R

R

r

~

0

R

C

is

inverse

 the

and

f

τ

R

r

~

R

-

0

R

=

f

C

f

where R is the 3x3 rotation matrix which transforms a vector expressed in frame j into a vector expressed in frame k, and r is a vector from the origin of frame j to frame k expressed in frame j.

To efficiently compute the product of two spatial transforms we have

[image: image8.wmf]i

i'

T

1

-

i

i'

i'

1

-

i

i

1

-

i

1

-

i

i'

i'

1

-

i

1

-

i

i'

1

-

i

i'

i'

i

i

i'

i'

i

i'

i

1

-

i

i'

i'

i

i

1

-

i

1

-

i

i'

i'

i

1

-

i

i'

i'

i

z

R

c

p

where

R

c

~

R

-

0

R

A

z

~

A

-

0

A

R

A

p

~

R

A

-

0

R

A

+

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

4. Inertia: f = Ia

Newton’s second law can be written using spatial vectors for the force and acceleration. The force on body i expressed in frame i is given by

[image: image9.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

=

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

m

0

0

0

m

0

0

0

m

M

and

s

~

m

h

~

where

a

M

h

~

-

h

~

I

=

a

I

f

a

The inertia tensor is given by

[image: image10.wmf]density

i

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

-

-

-

+

-

-

-

+

=

òòò

òòò

òòò

òòò

òòò

òòò

òòò

òòò

òòò

r

r

r

r

r

r

r

r

r

r

;

dv

)

y

(x

dv

(yz)

dv

(xz)

dv

(yz)

dv

)

z

(x

dv

(xy)

dv

(xz)

dv

(xy)

dv

)

z

(y

2

2

2

2

2

2

I

The mass of body i is mi and the vector in frame i to the center of mass of body i is si. The mass, center of mass, and inertia tensor are all integral properties over the volume of the rigid body. The algorithm by Lien and Kajiya is a robust method for computing these properties and thus for obtaining the inertia matrix Ii for a closed polyhedral object.

If frame i is aligned with the principal axis of the body then

 is a diagonal matrix. Given oI at the origin, cmI at the center of mass is given by

[image: image11.wmf]matrix

identity

 the

is

E

where

)

s

s

E

s

s

(

m

I

I

T

i

i

i

T

i

i

-

-

=

O

CM

For a rectangular volume with size x, y, z, centered at the origin

5. [image: image1.wmf][

]

T

z

y

x

z

y

x

j

υ

υ

υ

ω

ω

ω

v

=

i

Force Applied at a Point

The spatial force ifi on body i expressed in frame i resulting from a linear force f applied along a line of force through point P in frame i is given by

[image: image12.wmf]ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

=

f

f

r

~

f

τ

f

i

i

where r is the vector to P in frame i. Recall that torque is the cross product of the offset vector and the force vector.

6. Gravity

The acceleration of gravity 0g in frame 0 (world coordinates) is the vector [0, -9.8 m/s2,0]T. If iR0 is the 3x3 rotation matrix that transforms vectors to frame i, and si is the vector in frame i to the center of mass of body i, then the spatial force ifi due to gravity on body i expressed in frame i is given by

[image: image13.wmf]g

R

g

where

g

g

s

~

m

f

0

0

i

i

i

i

i

i

i

i

=

ú

û

ù

ê

ë

é

=

An efficient method for computing gravity on an articulated body model is to give the inertial frame an artificial acceleration upward. Since the inertial frame is the root node of the articulated body tree and it is fixed in world coordinates, this has the effect of applying a gravitational force to all of the bodies.

7. Contact Force

The oriented bounding box (OBB) method is an efficient way to compute collisions between objects (Lin, Manocha). It returns information about the collision points between the polygons in the colliding polyhedra. The spatial forces due to this contact must be calculated. Springs and dampers have been used to model the linear force at a collision point P as a function of the depth of penetration x. One spring function is f = - kd v – ks x, where v is the velocity of x, kd is the damping constant and ks is the spring constant. A nonlinear spring (Marhefka & Orin) is

f = - kd xn v – ks xn . Such methods require painful tweaking. One problem is with the numerical integrator stepsize. The first time step of a collision may be too large thus producing a huge restoring force. The colliding body may fly away at high speed having gained energy in the collision. The departing body can be tracked for a time after the collision using a “sticky” force to ensure that it loses energy. We have experimented with variable springs that compute a running estimate of the “felt” inertia being resisted by the contact force and compute the force required to move the estimated mass back to the surface. The most promising methods seem to be ones that add constraints to the system at the point of contact. The direction of the contact force is computed from the surface normals and the velocity vector of the impacting body in such a way as to simulate friction by opposing velocity components orthogonal to the normal and also pushing in the direction of the normal.

8. Numerical Integration

The reduced coordinate method for forward dynamics computes the accelerations of the joint space parameters q. The Euler integrator is given by

[image: image32.wmf]c

error

k

vk

c

error

k

pk

 v

K

-

p

K

-

=

+

c

k

t

This is certainly a very simple integrator. Unfortunately, the Euler method is not well suited to dynamic system simulations due to the large magnitude of torques and forces that arise especially during collisions. On the other hand, implicit methods, while well suited to stiff systems of ODEs, may require considerable computational cost.

The explicit Runge-Kutta 5th order integrator with Fehlberg parameters is a robust adaptive step size integrator which computes several estimates for the next value of qi and uses these values to get an error estimate. The step size is adjusted to bound this error. See the excellent survey by Enright et al or Numerical Recipes in C.

Reduced coordinate methods with no kinematic loops are not particularly troubled by integrator drift since the joints cannot drift apart due to this error. In maximal coordinate methods joints can actually drift apart due to accumulated integrator error. Springs can be used (rather expensively) to pull them together or the solution accelerations may be transformed back to joint space. Kinematic loop systems can use soft damped springs to slowly force corrections to loop constraint drift.

Articulated Body Representation

With the above review of some of the basics, we can now describe articulated body systems and present the Brandl version of structural recursion for forward dynamics.

[image: image14.wmf]link body

i

i’

C

i-1

link body

i-1

i

C

i’

joint

i-1

frame

i-1

frame

i’

frame

i

z

i

joint

i

z

q

1

=

q

y

z

y

[

]

[

]

i

i

i

i

i

i

i

T

i

T

i

T

i

T

-

-

=

=

é

ë

ê

ù

û

ú

é

ë

ê

ù

û

ú

=

é

ë

ê

ù

û

ú

1

1

C

C

C

A

0

0

A

1

0

z

1

R

0

0

R

1

0

c

1

AR

0

A

z

R

+

AR

c

AR

'

'

'

~

~

~

~

c

i

x

x

outer joint

i

 frame

inner joint

i

 frame

If z

i

 expressed in frame

i-1

 (internal)

then

[

]

i

i

i

T

i

T

-

=

+

é

ë

ê

ù

û

ú

1

C

AR

0

0

AR

1

0

z

c

1

~

~

If z

i

 expressed in frame

i’

 (in API) then

Figure 1: Articulated joint coordinate frames

1. Joint Geometry

Figure 1 shows the geometry of a movable joint which connects two rigid body links of an articulated chain of links. This link geometry forms the basis for the propagation of motion and forces from link to link. Link i has a joint i which specifies the relative motion of link i with respect to link i-1. Transform iCi-1 transforms spatial vectors from the coordinate frame of link i-1 to the coordinate frame of link i. It is the product of the constant transform i’Ci-1 from framei-1 to the inner joint framei’ and the variable transform iCi’ from framei’ to the outer joint framei representing the variable joint position. i’Ci-1 may involve a general rotation R and translation c. iCi’ may comprise a joint translation zi resolved in frame i’ and a joint rotation A. This joint geometry is due to Roberson. The joint transformation iCi’ is general and thus can support up to 6 degree of freedom joints. A revolute joint has just one rotational degree of freedom. The transform iCi-1 transforms spatial vectors from the coordinate frame i-1 to frame i using: ipi-1 = iCi-1 i-1pi-1. This transform applies to spatial vectors and has the property that when the joint variables qi are all zero, frame i is coincident with frame i’.

Figure 2 gives A and z values for some useful joints as given by Roberson. The constant values R and c depend on the particular skeletal geometry of an articulated body and are specified by the application. It is advisable to specify R and c so that the joint itself takes the simplest form of a rotation about the z axis or a translation along the z axis in frame i’. The joint parameters qi and the motion space mode vectors (, (, (c, and (c are also given. (is a basis matrix which projects joint space into motion space. . Also, unless indicated otherwise, (= (and (c = (c . These will be discussed later.

Note that for the spherical joint,
[image: image15.wmf]i

q

&

requires special computation since angular position cannot be specified unambiguously with 3 parameters and must be represented using a quaternion. The angular velocity is used to compute the derivative of the quaternion which is then used to compute a derivative of the rotation matrix A which is then multiplied by A. For example, a revolute joint with scalar velocity
[image: image16.wmf]i

q

&

 about the z axis, yields a relative spatial velocity in motion space of

[image: image33.wmf]ú

û

ù

ê

ë

é

=

=

Δr

Δθ

)

(

p

and

)

 v

-

(v

)

(

v

T

c

error

k

k1

k2

T

c

error

k

c

k

c

k

y

y

Type
A
z
Motion space (, ((c)
Type
A
z
Motion space (, ((c)

Revolute

(about z
q1=(

, s=sin((), c=cos(()

six dof
same as spherical

Revolute

(about u1

u1=(x,y,z)

u1,u2,u3 are orthonormal
q1=(

 c=cos((), s=sin((), v=1-c

,

universal

c1=cos((1), s2=sin((2), etc.

Type
A
z
Motion space (, ((c)
Type
A
z
Motion space (, ((c)

Prismatic

(sliding s along z)

q1 = s

Planar

(sliding in x,y)

3A(()

Prismatic

s along u1

q1 = s

Cylindric

3A(()

Screw

q1 = (
s = s0 + ((
3A(() =

c=cos((), s=sin(()

 EMBED Equation.2

Spherical

q1...q4 Euler normalized parameters:

quaternions

 EMBED Equation.2

 EMBED Equation.2

Figure 2. Joint Parameters from Roberson & Schwertassek

2. Structural Recursion

Spatial vectors may be propagated from link to link by recursively computing a value at a link from the value of it’s parent plus the effect of the joint. Velocity vi-1 in frame i-1 propagates to frame i in a chain of nB bodies (i = 1,...,nB) as follows

 EMBED Equation.2

[image: image17.wmf]q

v

;

 v

v

C

v

i

rel

i

rel

1

i

1

i

i

i

&

f

=

+

=

-

-

Thus, given the spatial velocity of the rigid body of link i-1, this equation may be used to compute the velocity of link i which adds the relative velocity due to the motion of joint i. qi is the joint position vector, qi = (z for a simple revolute joint. To propagate spatial acceleration vectors from one link coordinate system to another we have.

[image: image34.wmf]ú

û

ù

ê

ë

é

+

=

+

+

=

-

-

-

-

-

))

2

r

~

(

~

AR(

)

~

AR(

;

q

a

C

a

rel

i

1

1

rel

1

i

1

1

i

i

u

w

w

w

w

h

h

f

i

i

i

i

i

i

i

i

i

&

&

where ri = ci + zi, (see figure 1) and (is the spatial coriolis term (Roberson, Brandl).

3. Resultant Forces

Spatial force vectors may be represented in terms of the applied (input) joint space forces (i (ni x 1 vector, where ni is the number of degrees of freedom of joint i), and the constrained joint space forces
[image: image18.wmf]τ

c

i

((6-ni) x 1 vector) as follows,

[image: image19.wmf]t

y

t

y

c

i

c

i

i

i

i

+

=

f

where c superscripts indicate constrained joint torques and joint subspaces, and ((psi) forms a dual basis to ((phi) as follows

Figure 2 gives ((psi) and ((phi) for various types of joints. The columns of (are the set of spanning vectors (or basis vectors) for the space.

Spatial forces are transformed from frame i+1 to frame i by the transpose of the i+1Ci transform. The resultant force on body i from all applied forces, constraint forces, and forces from successor links s(i) in the tree or chain, may be obtained from

[image: image20.wmf]ú

û

ù

ê

ë

é

-

=

-

=

-

-

+

=

å

å

Î

Î

)

s

~

(

~

m

I

~

f

v

I

v

~

f

;

X

a

I

f

C

f

i

i

i

i

i

i

i

Ei

i

i

i

Ei

i

i

k

ik

i

i

s(i)

l

l

i

l

i

w

w

w

w

b

b

t

c

L

k

T

I is transformed from frame i+1 to i by

[image: image21.wmf]i

1

+

i

1

T

i

1

i

C

I

C

I

+

+

=

i

i

fEi is the resultant of all external forces acting on body i. The set of loops L is empty for open chain structures having no loop constraints (see below). (includes external and velocity product forces. si is the vector in frame i to the center of mass of body i.

4. Joint Limits

Joints are also given limits by adding joint forces/torques which limit the extent of motion of the joint. If the joint angle exceeds its limit a counteracting torque is applied given by

[image: image22.wmf].

q

 than

less

is

q

if

q

k

-

)

q

-

(q

k

or

q

exceeds

q

if

q

k

-

)

q

-

(q

k

min

d

min

s

max

d

max

s

&

&

=

-

=

r

r

t

t

 McKenna has suggested the following joint limits

[image: image23.wmf]î

í

ì

>

-

-

-

<

-

-

=

max

max

min

min

q

q

if

1)

)

q

β(q

α(e

q

q

if

1)

q)

β(q

α(e

L

where

Parameter b provides joint damping and the exponential joint limit term L models the tendons and internal contacts that limit the motion of a joint where qmin and qmax are the lower and upper joint limits.

Dynamics Algorithms

With the above background we can now look at two algorithms, the first is the open chain algorithm for systems without loops which is quite simple and may be used to model creatures. The second is much more complex and handles systems with closed loops. Mechanisms typically have multiple loop constraints.

1. Open Chain Algorithm

Given a chain or tree of nB links (bodies) connected by joints and having no loops we wish to compute the joint space acceleration vector
[image: image24.wmf]q

&

&

i

. This is known as the open chain solution for the joint acceleration as a function of the joint positions, motions, and applied torques. This solution also incorporates external forces due to collisions. Figure 3 is a simple tree of links.

[image: image25.wmf]Inertial frame 0

(world coords)

Body

1

Body

3

Body

2

frame

1

Frame

3

Frame

2

Figure 3: The numbered bodies and frames of a simple tree structured multibody system.

The predecessor function p(i) gives the number of the link that is the parent of link i in the tree (eg. p(3)=1). Link 0 is called the reference body or inertial frame and has an acceleration of a0. We use the following multibody algorithm of Brandl, Johanni, and Otter to compute the vector of joint accelerations
[image: image26.wmf]q

i

&

&

 for the chain containing nB links.

[image: image27.wmf]desired)

(if

τ

,

q

:

output

parameters

joint

and

link

,

a

τ,

,

q

q,

t,

:

input

c

0

&

&

&

for i=1,2,...,nB

// forward velocity terms

endfor

for i = nB, nB-1,...,1

// backward inertias

 if p(i) != 0

endfor

for i = 1,2,...,nB

// forward accelerations

endfor

[image: image28.wmf]I

*

i

 is the articulated body inertia of links i through nB which is the inertia that is “felt” at the coordinate system attached to link i when the joint actuator torques/forces (for links i+1 to nB are set to zero.

The inputs to Brandl’s structurally recursive algorithm are the joint space joint positions qi, the associated velocities
[image: image29.wmf]q

&

i

, the applied joint torques (, and the external forces (in (). The algorithm has three main recursive traversals (shown here as for loops). The first pass visits the bodies in increasing order computing velocity dependent parameters. The second pass visits the bodies in decreasing order ie. from the tips to the root computing “felt” inertias and resultant forces. The third pass visits the bodies in increasing order from the root to the tips computing the joint space accelerations.

This algorithm computes the joint space acceleration vector
[image: image30.wmf]q

&

&

i

, the motion space accelerations of the bodies, and the forces in the constrained directions. We now need a solution for structures that contain kinematic loops.

2. Systems with Loops

The articulated body in figure 3 can be handled by the previous algorithm. The articulated body of figure 5 contains a kinematic loop. The following algorithm by Brandl will solve such systems. A system with loops must be reduced to its spanning tree by identifying a set of joints which break any loops. These joints are called loops or “secondary joints”. Figure 4 shows the geometry of a secondary joint. The body of such a joint is actually some other body in the structure with which the joint forms a kinematic loop.

[image: image31.wmf]loop body p

2

(k)

k’

C

p1

(k)

body p

1

(k)

k

C

k’

Joint

p1(

k)

Frame

p1(

k)

frame

k’

frame

k

z

k

Secondary

“

loop”

joint

k

z

y

z

y

c

k1

x

x

outer joint

k

 frame

inner joint

k

 frame

z

y

x

Predecessor

of body p

2

(k)

c

k2

z

y

x

root body

k

C

p2

(k)

Frame

p2(

k)

Figure 4. Secondary joint structure.

To compute the accelerations of the bodies given the positions, velocities, and forces of the joints, we first separate the joints into two groups, namely primary and secondary joints. The secondary joints comprise the minimum set of joints whose removal eliminates all loops. For figure 5, joint 4 could be the single required secondary joint. A loop is associated with, and given the number of its secondary joint. The root of a loop is the body in the loop which has the smallest number. Loop 4 has root body 0 and contains bodies 0, 1, 2, and 3. Two loops are called connected if they have a common joint. Each body in the system must contain a list of loops which contains 1) all loops having this body as root (type LR), 2) all loops not in LR which include this body (type LB), and 3) all loops not in LR connected to loops in LR (type LJ).

Figure 5. Articulated body with loop. A simple steam engine is on a base body B0. Revolute joint 1 turns flywheel B1. Revolute joint 2 affects connecting rod B2, revolute joint 3 connects piston rod B3. Prismatic joint 4 acts on cylinder fixed to base thus connecting the loop. A periodic force applied to joint 4 should keep the flywheel turning by building up inertia.

The constraint equations imposed by a secondary joint are (Brandl 87)

 EMBED Equation.2

 EMBED Equation.2

where k is a secondary joint which connects body p1(k) to body p2(k). The algorithm of Brandl et. al. is given below for the solution of systems such as that shown in figure 5.

input:

// link and joint parameters

output:

// accelerations & constraint forces

initialize:

for i = 1 to

 step 1 do
// Forward kinematics recursion

// v [6,1], C [6,6], I [6,6]

// ([6,1], ([6,1]

end

for all k: k (L do

// secondary joint constraints

// psi (c [6,6-nk], (rel in (k1

// X [6, 6-nk]

// zeta ([6-nk,1]

(for restoring wrench, init all (ck)

end

for i =

to 1 step -1 do
// Backward dynamics recursion

 if body i is a root body then do

 // k,...,l (LR(i) are constraints (Loops) with Root body i.

 // Note: Xik = 0 if i (p1(k) and i (p2(k); Xik [6,6-nk]

 // Bij [6-ni,6-nj]; ([1,6-nk]

// ([6,1]

 for all m: m (LJ*(i) do

// eliminate constraints

 // LJ*(i) = loops (LR(i) connected to loops (LR(i)

 end for

 end if

// H [ni,ni], N [6,6], (H([6,6]

// ([6,1]

// don’t do if p(i)=0

// don’t do if p(i)=0

 for all k: k (LB(i) do

// eliminate bodies

 // LB(i) = Loops containing Body i, with i not the root.

// ([6-nk,1], (T() [ni,1]

 endfor

 for all k,m: k,m (LB(i) do

// ([6,ni], H [ni,ni]

// Bkm [6-nk,6-nm], Xim [6,6-nm], (H(T [6,6]

 endfor

endfor

for i = 0 to

 do

// Forward acceleration recursion

 // don’t do next three equations for i = 0

 if body i is a root body then

 //

 k...l (LR(i)

 endif

endfor

Since the constraints imposed by secondary joints are often linearly dependent with the primary joint constraints, the matrix Bi* may be singular. Brandl does not address this but clearly most highly constrained mechanisms will yield a singular Bi* matrix. Singular value decomposition is used to obtain the inverse. First SVD is used to obtain Bi* = [U][W][V]T where U and V are orthogonal and W is diagonal. The inverse Bi*-1 = V [diag(1/wj)] UT. For w values near zero 1/w is set to zero since these represent equations with no effect. See Numerical Recipes for more details of SVD.

3. Integrator drift

As mentioned previously, integrator error can accumulate causing “integrator drift” in the bodies. In reduced coordinate methods the joints themselves cannot drift apart but the loop constraints assume a perfect integrator. The loop constraints can then drift. In our steam engine example the pin that constrains the rocker arm to the base slowly moves.

[image: image35.wmf][

]

i

0

0

0

1

0

0

i

rel

q

q

v

&

&

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

=

f

David Orin suggested that to correct for the drift we can compute the velocity, and position/orientation errors at loop joints. We compute the values from both predecessor chains connected to the loop joint and find their difference. This error is then projected onto the constrained directions of the joint.

[image: image36.wmf]t;

q

q

t;

q

q

i

i

i

i

D

=

+

D

=

+

&

&

&

&

A small restoring wrench to counteract the drift is computed as a spring and damper on the position and velocity errors. The spring constants are diagonal gain matrices.

4. Performance

General collision detection may be unnecessary. Collisions with the ground can be done by testing an x,y location against an elevation map or by casting an intersection line downward. Game logic may make it feasible to have limited sets of colliders and collidees (Bishop) so that only a few intersection tests need be performed.

The transforms of spatial vectors by C should not be done as a 6x6 times 6x1 transform, but as several 3x3 times 3x1 transforms.

It is important that all intermediate or scratch matrices be pre allocated in an area of contiguous memory so that cache behavior on matrix operations is improved.

It would be interesting to explore the observation that, in the backward recursion, the H, H-1, I*, and N matrices may not change rapidly and therefore may not need to be computed every time step. This is currently one of the items on our list of approximation techniques that have the potential to significantly reduce the computation required.

Toolkit Interface

The Intel Scene Manager (ISM) is an object oriented runtime scene manager. The ISM toolkit provides an interface for the construction and simulation of articulated body mechanisms. This includes a linear algebra package, an OBB collision detection system, and extensions of the TransformGroup object for representing rigid body links.

5. Linear Algebra Package

Most of the dynamics computational work is done by our general matrix library called GMatrix. We are working to optimize this code to use parallel floating point units. The following basic set of functions are provided. Notice that transpose flags on multiply allow most transposes to be free. Memory allocation on resize is not done unless necessary. Attention is paid to memory locality during dynamics calculations.

class ISMGMatrix {

public:

ISMGMatrix();

ISMGMatrix(int rows, int cols);

~ISMGMatrix();

void Resize(int nr, int nc);
// resize the matrix

void Zero();

void Negate();

void Identity();

void IdentityMinus();

int Invert();

void LUDecomposition(ISMGMatrix &indx, ISMGMatrix &temp, float &d);

void LUBackSubstitution(ISMGMatrix const &indx, ISMGMatrix &b) const;

int SVDecomposition(ISMGMatrix &W, ISMGMatrix &V, ISMGMatrix &tmp);

void SVDBackSubstitution(ISMGMatrix const &U, ISMGMatrix const &W,

ISMGMatrix const &V, ISMGMatrix const &b, ISMGMatrix &tmp);

void SVDInvert(ISMGMatrix const &U, ISMGMatrix const &W, ISMGMatrix &V);

void Jacobi(ISMGMatrix &eigval, ISMGMatrix &eigvec, int &nrot);

void Copy(ISMGMatrix const &GM, int r0, int c0,int nr,int nc,int r1, int c1);

void Copy(ISMTensor const &T, int r0, int c0,int nr,int nc, int r1, int c1);

void Copy(ISMSpatialVector const &SV);

void Mult(ISMGMatrix const &A, ISMGMatrix const &B, int Atranspose,

int Btranspose);

void Transform(ISMSpatialVector const &A,ISMSpatialVector &B, int transpose);

void Add(ISMGMatrix const &GM);

void Add(ISMSpatialVector const &SV);

void Sub(ISMGMatrix const &GM);

void Scale(double scale);

const ISMGMatrix& operator=(const ISMGMatrix& m);

int nrow, ncol, rsize, msize;

ISMDOUBLE **mat;

// access only as mat[i][j]

protected:

void SVDBiDiag(ISMGMatrix &w, ISMGMatrix &rv1, double &anorm);

void SVDInitialWV(ISMGMatrix &w, ISMGMatrix &v, ISMGMatrix &rv1);

double Pythag(double a, double b);

};

6. Body Object

The Body object is extended from the TransformGroup object as follows. The children of the node represent the geometric shape of the body and the successor links in the articulated body tree structure. A body contains rigid body parameters for link i and the joint information connecting link p(i) to link i.

7. BaseBody Object

A BaseBody is the root body of the articulated body structure and is used to store the matrices needed for intermediate storage during the computation. This is intended to improve the cache performance.

8. Loop Object

A loop body is a body whose joint is a secondary joint and whose body is in the spanning tree.

9. Execution

The application initializes the bodies and attaches the BaseBody root into the scene. On a frame update event the collision detection and contact force calculations are used to set the external forces on the appropriate bodies. The BaseBody of the dynamic object is instructed to execute the dynamics for time t. The forward dynamics algorithm is executed as many times as needed by the integrator subject to application limits. The integrator outputs are used to compute the A and z values which are used to set the transforms for the shape objects. Then the scene is rendered.

ISM supports multithreading which allows separate threads to perform the behaviors, collisions, culling, and the rendering. On a 2 processor system the steam engine model gets over 95% of both processors. One processor is primarily doing the dynamics and the other feeds the graphics accelerator. A separate thread handles the spatial sounds which are synchronized with the moving parts of the dynamic model.

10. Behavior Culling

The application is responsible for posting events that may be used to stop the simulation when the viewer is not close to or cannot see the model. One way to do this is to stop time and then resume time when the model enters the viewing or activation region. This requires maintaining separate times for each model. At times it is appropriate to simply restart the dynamics. It is not usually feasible for the integrator to “catch up” to the current time.

It might be interesting to try various behavioral level of detail techniques where the model switches from full dynamics, to partial dynamics where body parts are merged into single bodies, to motion capture kinematics plus gravity, as the model gets farther from the viewer.

11. Runtime Structural Change

Since we can attach and detach the children of a Body object and can preserve the velocity, it is possible to detach a body in the midst of dynamic motion and give it a BaseBody and 6 DOF joint to the inertial frame. The body will then fly off on some trajectory. This provides one way to handle breaking a model.

Conclusion

This paper has presented the necessary background and algorithms to integrate the structurally recursive forward dynamics algorithm into an object oriented scene manager. We presented the Brandl algorithms for systems with and without kinematic loops and discussed some of the practical issues of collision forces, integral properties, and numerical integration.

[image: image37.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

+

+

=

2

2

2

2

2

2

i

i

y

x

0

0

0

z

x

0

0

0

z

y

12

m

I

The following figures show some examples of dynamic models.

[image: image38.wmf][

]

i

0

0

0

1

0

0

i

rel

q

q

v

&

&

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

=

f

Figure 6. A physical model of a steam engine toy (Levy). The dynamics include three kinematic loops which constrain the rocker arm, the valve cylinder, and the piston cylinder to the base. This results in a 15x15 constraint matrix to be inverted using SVD.

Figure 7. An interactive program called “mechanic” is used to convert a static object into a dynamic one. The frame object in grey and red can be positioned, scaled and rotated to specify the joint frame of a body. Successor bodies are attached to their predecessors, and the integral properties are automatically computed. Save and load the dynamics from disk is supported. Dynamics can be turned on and off.

Acknowledgements

We would like to thank David Orin and Kathryn Lilly for several days of extremely helpful conversations. Thanks to Feng Xie for the scene manager support, and Sonja Jeter, Jill Hunt, and Nola Donato for help with the modeling. Thanks to Dave Sprague, Richard Wirt and Bob Liang for supporting this work.

References

1. Bishop et. Al. “Designing a PC Game Engine”, IEEE Computer Graphics and Animation, Feb. 1998.

2. Brandl, H., Johanni, R., and Otter, M., 1986, “A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix,” Proceedings of IFAC/IFIP/IMACS International Symposium of the Theory of Robots, Vienna, Austria.

3. Brandl, H., Johanni, R., and Otter, M., 1987, “An Algorithm for the Simulation of Multibody Systems with Kinematic Loops,” Proceedings of the IFToMM Seventh World Congress on the Theory of Machines and Mechanisms, Sevilla, Spain.

4. Craig, J. J., 1986. Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading MA.

5. Enright W.H., Higham D.J., Owren B., Sharp P.W., “A Survey of the Explicit Runge-Kutta Method”, http://www.cs.toronto.edu/NA/reports.html, file cs-94-291-ps.Z

6. Featherstone, R., 1987, Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston.

7. Featherstone, R. The Dynamics of Rigid Body Systems with Multiple Concurrent Contacts. In Robotics Research: The Third International Symposium, pages 189-196. MIT Press, 1986.

8. Freeman, P. S. and Orin, D. E., 1991. “Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structured Approach,” Int. Journal of Robotics Research, The MIT Press, Vol. 10, No. 6, pp. 619-627.

9. Lathrop, R. H. (1986). Constrained (closed-loop) robot simulation by local constraint propagation. Proc. 1986 IEEE International Conference on Robotics and Automation, 2, 689-694.

10. Levy, R., “Making Mechanical Marvels in Wood”, Sterling Publishing, June 1991.

11. Lilly, K. W., Orin, D. E., “Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, June 1994, Vol. 116 / 223.

12. Lilly, K. W., 1993, Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer Academic Publishers, Boston.

13. Lien, S., Kajiya J. T., “A Symbolic Method for Calculating the Integral Properties of Arbitrary Nonconvex Polyhedra”, IEEE CG&A, October 1984.

14. Marhefka, D. W., and Orin, D. E., “Simulation of Contact Using a Nonlinear Damping Model”. IEEE International Conference on Robotics and Automation, Minneapolis, MN, April 1996.

15. McKenna, M. and Zeltzer, D., “Dynamic Simulation of a Complex Human Figure Model with Low Level Behavior Control”, Presence, Vol. 5. No. 4, Fall 1996. 431-456

16. Roberson, R. E., and Schwertassek, R. F., 1987, Dynamics of Multibody Systems, Springer-Verlag, Berlin.

17. Shantz, M., Krasnov, D., Kibkalo, A., Subbotin, A., Xie, F., and Park, T., “Building Online Virtual Worlds”, Graphicon-96, July 1-5, 1996, GRAFO Computer Graphics Society, State Education Center, Saint Petersburg, Russia.

18. Walker, M.W., and Orin, D.E., “Efficient Dynamic Computer Simulation of Robotic Mechanisms,” Journal of Dynamic Systems, Measurement and control, 104:205-211, September 1982.

19. B. Mirtich, Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D. thesis, University of California, Berkeley, December 1996.

20. B. Mirtich, Multibody Dynamics Package, http://www.merl.com/people/mirtich/multibodyDynamics.html
21. Chris Hecker's Rigid Body Dynamics Information, http://www.d6.com/users/checker/dynamics.htm

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

[image: image39.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

+

+

=

2

2

2

2

2

2

i

i

y

x

0

0

0

z

x

0

0

0

z

y

12

m

I

[image: image40.wmf]t;

q

q

t;

q

q

i

i

i

i

D

=

+

D

=

+

&

&

&

&

[image: image41.wmf]ú

û

ù

ê

ë

é

=

=

Δr

Δθ

)

(

p

and

)

 v

-

(v

)

(

v

T

c

error

k

k1

k2

T

c

error

k

c

k

c

k

y

y

[image: image42.wmf]ú

û

ù

ê

ë

é

+

=

+

+

=

-

-

-

-

-

))

2

r

~

(

~

AR(

)

~

AR(

;

q

a

C

a

rel

i

1

1

rel

1

i

1

1

i

i

u

w

w

w

w

h

h

f

i

i

i

i

i

i

i

i

i

&

&

[image: image43.jpg]

[image: image44.wmf]c

error

k

vk

c

error

k

pk

 v

K

-

p

K

-

=

+

c

k

t

_890126204.unknown

_919497356.unknown

_951391433.unknown

_951458595.unknown

_951498802.unknown

_951733810.unknown

_951734023.unknown

_951827145.unknown

_951809647.unknown

_951733987.unknown

_951509051.doc

Framep1(k)

Framep2(k)

kCp2(k)

k’Cp1(k)

Predecessor

of body p2(k)

z

y

x

root body

Jointp1(k)

ck2

loop body p2(k)

body p1(k)

kCk’

outer jointk frame

inner jointk frame

z

y

x

ck1

Secondary

“loop” jointk

z

x

z

x

framek

zk

y

y

framek’

_887013503.unknown

_890551964.unknown

_919262802.unknown

_887013489.unknown

_951591618.unknown

_951592784.unknown

_951507549.unknown

_951507253.unknown

_951494106.unknown

_951498746.unknown

_951459236.unknown

_951491304.unknown

_951459614.unknown

_951459126.unknown

_951422942.unknown

_951423978.unknown

_951426869.doc

Frame2

Frame3

frame1

Body3

Body2

Body1

Inertial frame 0 (world coords)

_951427345.unknown

_951427883.unknown

_951424480.unknown

_951423899.unknown

_951423329.unknown

_951422530.unknown

_951422850.unknown

_951396560.unknown

_951419279.unknown

_951399053.unknown

_951395780.unknown

_951392866.unknown

_922088042.unknown

_951387206.doc

If zi expressed in framei’ (in API) then

If zi expressed in framei-1 (internal) then

� EMBED Equation.2 ���

� EMBED Equation.2 ���

inner jointi frame

z

jointi

outer jointi frame

jointi-1

framei-1

x

z

x

framei

zi

link bodyi-1

iCi’

ci

link bodyi

y

y

i’Ci-1

q1= 

framei’

_887013503.unknown

_919262802.unknown

_924675995.unknown

_924676024.unknown

_890551964.unknown

_887013489.unknown

_951390526.unknown

_924694613.unknown

_924696498.unknown

_922088272.unknown

_919516584.unknown

_919577892.unknown

_919578377.unknown

_919620861.unknown

_919578162.unknown

_919577778.unknown

_919498314.unknown

_919514304.unknown

_919516200.unknown

_919497382.unknown

_919497383.unknown

_919497381.unknown

_919445667.unknown

_919450679.unknown

_919456174.unknown

_919497354.unknown

_919497355.unknown

_919496794.unknown

_919455270.unknown

_919456134.unknown

_919452282.unknown

_919454043.unknown

_919452157.unknown

_919450046.unknown

_919450452.unknown

_919450032.unknown

_890553449.unknown

_919443759.unknown

_919444717.unknown

_919445491.unknown

_919443760.unknown

_919443757.unknown

_919443758.unknown

_893221944.unknown

_895516597.unknown

_893221828.unknown

_890136116.unknown

_890137230.unknown

_890137732.unknown

_890136017.unknown

_890127423.unknown

_889015490.doc
�����������������������������������

B4=B0

B1

J=joint, B=body, F=force

B0

Inertial

frame

F4

J4

J1

J3

B3

B2

J2

_889531940.unknown

_889539772.unknown

_889873180.unknown

_889874625.unknown

_889877147.unknown

_889877646.unknown

_890125766.unknown

_889877325.unknown

_889875351.unknown

_889873568.unknown

_889874564.unknown

_889872149.unknown

_889872581.unknown

_889540145.unknown

_889534372.unknown

_889539304.unknown

_889532300.unknown

_889271407.unknown

_889274453.unknown

_889275668.unknown

_889271673.unknown

_889258817.unknown

_889259242.unknown

_889258620.unknown

_889258461.unknown

_887255849.unknown

_887258683.unknown

_887259875.unknown

_887261570.unknown

_887259524.unknown

_887257220.unknown

_887258353.unknown

_887256220.unknown

_887179231.unknown

_887183761.unknown

_887212487.unknown

_887180736.unknown

_887089009.unknown

_887099261.unknown

_887113037.unknown

_887088944.unknown

